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1.0 SUMMARY

In 1993, NASA Lewis Research Center initiated a three year effort to research, design, and
develop internal mixers for reducing subsonic jet noise of both low-bypass ratio
(approximately 1.7) and high-bypass ratio (approximately 6.0) turbofan engines. The goal of
the program was to reduce sideline during takeoff noise by 3 EPNdB (Effective Perceived
Noise Level in deciBel) relative to noise levels consistent with 1992 mixer technology. This
program was known as LET (Large Engine Technology) Task XXXVII, Subsonic Jet Noise
Reduction NASA contract NAS3-26618. In 1994, Pratt & Whitney (P&W) was awarded this
contract in order to pursue the mixer design for low-bypass ratio engines.

An objective under this NASA contract is to assess design methods based on computational
fluid dynamics (CFD) and computational aeroacoustics (CAA) codes that are capable of
predicting both the far-field jet noise and performance impact of mixed nozzle exhaust
systems. This capability will permit analytical evaluation of promising concepts and
minimize reliance on costly and time consuming “cut and try” development methods.

In 1994, (under internal funding) Pratt & Whitney used CFD (i.e., NASTAR) to guide the
design of a mixer that would achieve a noise reduction relative to an existing P&W 12-lobe
mixer. Since lower jet noise corresponds to reduced peak velocity and temperature profile at
the exit plane of the nozzle, the objective was to achieve the most uniform velocity profile
possible. Analysis of CFD for the baseline 12-lobe mixer indicated that there were 12
“regions of high temperature” located at the exit plane of the exhaust nozzle, and each were
aligned with a mixer lobe. The output of CFD for thé 12-lobe mixer at 4 axial locations
downstream of the nozzle exit plane are shown on Figures 7.3.5 and 7.3.6. Since the goal
was to achieve a uniform velocity profile, elimination of the “regions of high temperature”
were necessary. This was accomplished by introducing a mini-chute at each primary lobe of
a 16-lobe mixer to provide additional cooler fan air at the location of the “region of high
temperature”. The incorporation of a mini-chute as can be seen from Figure 4.0.1 results in a
mixer that appears to have a “double lobe” at each primary lobe location. This mixer was
designated the Advanced Technology Mixer (ATM). A photo of the ATM can be found on
Figure 4.2.6.1. Pre-test CFD analysis for this mixer showed that the “regions of high
temperature” associated with incomplete mixing of the hot flow within the lobes was not
present. However the ATM had developed a different flow pattern with concentric
isothermal regions, which became known at Pratt & Whitney as the “ring of fire”. The CFD
analysis of the ATM is shown on Figure 7.3.7.

In 1994, both noise and aero (i.e., Laser Doppler Velocimetry (LDV)) testing was conducted
in the NASA Lewis Research Center Nozzle Acoustic Test Rig (NATR) for a splitter, 12-
lobe mixer, 20-lobe mixer, and the ATM. The CFD analysis of both the baseline 12-lobe
mixer and 20-lobe mixer compared favorably with the measured LDV data, as can be seen
from Figures 8.2.7 and 8.2.8, respectively. The results of the CFD analysis for the mixers
were then used as input to NASA Lewis’s MGB (Mani et al.’) acoustic analogy code. The
results of MGB were then compared to the actual measured noise data. The comparison was
not favorable, which led to parametric studies of the MGB code, and also calibration by using
noise data from the simpler splitter configuration.
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In 1996, CFD was used to design a new 24-lobe mixer, which as with the 20-lobe mixer was
a parametric version of the 12-lobe mixer with a higher lobe count. Pre-test CFD analysis
showed that the 24-lobe mixer had a reduced peak jet velocity relative to the 20-lobe mixer,
and therefore was expected to be quieter. CFD analysis also showed that a lower peak
exhaust velocity for the 20-lobe mixer could be achieved if every other lobe were cutback
(i.e., scarfed).

Noise and aero testing was once again conducted at NASA’s NATR facility. Since LDV data
acquisition was time consuming, it was decided to obtain total pressure and total temperature
traverse measurements in the exhaust duct, and in the jet plume. Noise testing was conducted
for all mixers that were tested in 1994 as well as the new 24-lobe mixer, and the modified 20-
lobe mixer. Noise testing was conducted on the 20-lobe mixer with zero scarf, and then
every other lobe was cutback 12 degrees. The result was a mixer with an alternating scarf
angle of 0 and 12 degrees. See Figures 4.2.1.1 to 4.2.6.1 for a picture of all the mixers tested.

In addition to noise testing of different mixers, testing was also conducted with various
changes in the flow path both upstream and downstream of the mixer. The changes upstream
consisted of the incorporation of simulated engine probes to determine their impact on the
performance of the mixers, (see Figure 4.4.1 for a picture of the probes). Changes
downstream consisted of an enhanced mixing device concept called vortex generators, which
were essentially low-profile triangular shaped wedges that were attached to the tailplug (see
Figure 4.3.1.1). Testing was also conducted with a scale-model version of a device called a
“muffler”, that has proven to reduce combustion noise in JT8D-200 series engine testing.
This device is a Helmholtz resonator that is tuned for low frequency combustion noise. Refer
to Figure 4.5.1 for a picture of the muffler. The intent of this test was to determine if the
muffler could cause an adverse effect on the mixing process downstream of the mixer.

Examination of the 1996 acoustic EPNL data (Section 7.1) indicates that the ATM mixer was
the best mixer design and that it achieved a 1.8 EPNdB reduction over the baseline 12-lobe
configuration. Of interest was the observation that the static performance (M..=0.0) of all the
mixers were essentially the same. This is most likely due to the importance of the low
frequency jet noise, which dominates the spectra at the static (0 Mach number) condition.
However in flight, the low frequency jet noise is reduced, and as a result the higher frequency
“mixing noise” becomes the dominant source. The acoustic data also indicated that the
muffler with the ATM had essentially no effect on the noise results. However geometry
perturbations of scalloping, scarfing and vortex generators increased the noise approximately
0.5 EPNdB, and the effects of engine probes increased the noise by approximately 1 EPNdB
and 2 EPNdB, with the 12-lobe mixer, and the ATM, respectively. Also, the ATM with
unheated fan flow was approximately 1 EPNdB higher than the ATM with heated fan flow.

At the same time, examination of the measured aerodynamic data shows the existence of a
residual-mixing region downstream of the common-flow nozzle exit plane. This mixing
region produces high frequency noise, which dominates the EPNL calculations. A detailed
discussion of this residual mixing region downstream of the nozzle exit plane can be found in
reference 26.
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The computational studies performed in this program used the P&W NASTAR Navier-
Stokes analysis and the MGB acoustic analogy code developed by NASA-NYMA.
Aerodynamic analyses were performed and favorable comparisons with measured LDV and
traverse data were obtained for the mean axial velocity, the turbulent kinetic energy and the
total temperature fields downstream of the nozzle exit plane for both the splitter and mixer
configurations. The NASTAR analysis predicted accurately the basic flowfield patterns as
well as the detailed levels and gradients.

The MGB analysis, used in conjunction with the NASTAR Navier-Stokes flow solver, has

been successfully applied to predict the acoustic characteristics of a multistream

axisymmetric nozzle. From these calculations, one can note that:

*» MGB provides reasonable acoustical signature predictions for axisymmetric multistream
nozzles,

e MGB provides reasonable acoustical signature predictions of scaling effects, e.g. size and
observer distance,

e MGB is a useful analytical tool for assessing turbulence modeling and input boundary
condition effects, and that sensitivities of order 2 to 4 dB were noted.

While calibrations with experimental data were good, it is believed that the CFD/MGB
analysis approach is best suited for predicting qualitative trends rather than absolute levels.
Similar comparisons performed for three-dimensional forced mixer nozzles were less
successful. While the analyses predicted the general shift in directivity pattern from the
axisymmetric splitter nozzle, they were unable to successfully discriminate between different
lobed mixer configurations. This appears to be largely due to the inability of the
circumferential averaging procedure for CAA to represent the 3D problem, rather than the
accuracy limitations of the CFD analysis.
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20 INTRODUCTION

Community sensitivity to aircraft noise has intensified over the years. As a result, ever
increasing noise stringency and regulations have been mandated by the FAA under FAR 36,
Stage 3 noise limits. This mandate specifies noise limits as a function of aircraft takeoff
gross weight in terms of EPNL for three conditions: approach, takeoff, and sideline during
takeoff. The aircraft engine industry responded to the more stringent noise limits by
introducing noise reduction design features into aircraft engines. The biggest advance in
noise reduction was the introduction of high-bypass ratio engines. These engines have much
lower exhaust velocities than low-bypass ratio engines and therefore lower jet noise. This is
due to the fact that jet noise decreases rapidly as jet exhaust velocity decreases. Therefore, in
order to reduce noise of low-bypass ratio turbofan engines, it is necessary to reduce jet
exhaust velocity. One very effective method to achieve this is the incorporation of an
Internal Exhaust Gas Mixer (IEGM, called mixer from here on). This device, see Fig. 2.0.1,
mixes high velocity core flow with lower velocity fan flow so that the peak exhaust velocity
at the nozzle exit is reduced. As a result, the low frequency jet noise is reduced relative to a
turbofan engine without a mixer.

Turbofan exhaust system mixer technology for jet noise reduction has been under
development for approximately 30 years. Historically, this development has relied on
extensive parametric testing, including both scale-model tests and full-scale engine tests.
Testing was carried out to determine both noise and thrust performance, and this generally
required separate tests in different facilities. Pratt & Whitney tested literally hundreds of
configurations of mixers in the 1970’s during development of mixers for both the JT8D and
JT8D-200 series of engines. This development effort led to the low bypass ratio mixers that
are in service today.

In the late 1980’s, P&W'’s hushkit partners successfully used P&W designed mixers as the
major element of hushkits for their JT8D engines. These hushkits were successfully used to
obtain Supplemental Type Certificates that allowed over 95% of JT8D powered aircraft to
meet Stage 3 noise limits. Pratt & Whitney is redesigning the mixer to further reduce jet
noise and thereby allow the remaining JT8D powered aircraft to meet Stage 3 noise limits.
Pratt & Whitney is also pursuing improvements to the mixer used for the JT8D-200 engine
which powers the MD-80 aircraft. The JT8D-200 is essentially a re-fanned JT8D engine with
approximately a 70% higher bypass ratio than the original JT8D. The JT8D-200 engine also
incorporated a mixer when it was originally certified. As a result, the JT8D-200 is
significantly quieter than the JT8D engine, and when entered into service on the MD-80
aircraft was certified to FAR 36 Stage 3 noise limits.

The regulatory environment in the 1990’s is increasingly stringent, with noise reductions
beyond FAR Part 36 Stage 3 being considered. Also, many airport authorities are imposing
landing fees and other restrictions based on aircraft noise levels. Thus, there is a need for
additional mixer technology for further reducing jet noise from low-bypass ratio turbofan
engines. Furthermore, it is critical that development time and cost be reduced so that the new
technology can be introduced in a timely fashion.
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In 1993, NASA Lewis Research Center initiated a three year effort to research, design, and
develop internal mixers for reducing the subsonic jet noise of both low-bypass ratio
(approximately 1.7) and high-bypass ratio (approximately 6.0) turbofan engines. The goal of
the program was to reduce the sideline noise during takeoff by at least 3 EPNdB relative to
noise levels consistent with 1992 era technology, without producing significant drag
penalties. This program was known as LET (Large Engine Technology) Task XXXVII,
Subsonic Jet Noise Reduction NASA contract NAS3-26618.

An objective under this NASA contract is to assess design methods based on computational
fluid dynamics (CFD) and computational aeroacoustics (CAA) codes that are capable of
predicting both the far-field jet noise and performance impact of mixed nozzle exhaust
systems. This capability will permit analytical evaluation of promising concepts and
minimize reliance on costly and time consuming “cut and try” development methods. Under
this contract, Pratt & Whitney elected to pursue jet noise reductions for low-bypass ratio
turbofan engines, since the technology developed in this program would be applicable to both
the hushkitted JT8D engines and also JT8D-200 powered MD-80 aircraft.

Under this contract, far-field noise and aerodynamic measurements of the jet were conducted
on 1/7th scale-model exhaust systems at the NASA Lewis Research Center Nozzle Acoustic
Test Rig (NATR) facility, in 1994 and 1996. Testing was conducted for a splitter (non-
mixed) exhaust system, and for multiple mixed-flow exhaust system configurations. Figure
2.0.2 is a schematic of both a splitter and a typical lobe mixed exhaust system installed in the
NATR test facility.

In the fall of 1994 far-field noise measurements were obtained for a total of five exhaust
nozzle configurations; the splitter (no mixer), a 12-lobe, a 20-lobe mixer plus two versions of
the 16-lobe ATM (with, and without lobe scallops). Figure 4.2.2 is a side view schematic of
a typical mixer showing a scallop (i.e., lobe cut out). The 12-lobe mixer was a scale-model
version of the mixer currently in service in the JT8D-200 engines that power the MD-80
aircraft, and hence is the baseline mixer. The 20-lobe mixer was designed to be a parametric
variation on only lobe count relative to the 12-lobe mixer. The ATM was the first attempt by
P&W to design a mixer by using CFD with the objective of obtaining the most uniform exit
velocity profile possible based on the assumption that this would produce the most noise
reduction. See Figures 4.1.1 for a photo of the splitter (no mixer), and Figures 4.2.1.1
through 4.2.6.1 for photos of all the mixers tested, including a 24-lobe mixer, which was
tested in 1996 and will be discussed shortly. The noise data were obtained over a range of
simulated engine power conditions from takeoff to approach and for two conditions of
simulated flight speed: static and 0.27 Mach number. The ATM, as well as all of the other
models tested during this contract, with the exception of the 24-lobe mixer, were designed
and built under Pratt & Whitney internal funding.
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Also in 1994, 1.DV data were obtained for a total of four configurations; the splitter (no
mixer), the 12 and 20-lobe mixers, and also the CFD designed 16-lobe Advanced Technology
Mixer (ATM). Since the LDV tests were a time consuming process it was decided to obtain
the LDV data at only one power condition. The point selected was power condition 8 (Table
3.1) at a flight Mach number of 0.10 in order to calibrate the contractor’s CFD capability at a
typical takeoff power condition for the JT8D-200 powered MD-80 aircraft. A higher Mach
number was desired to match the sideline during takeoff acoustic certification condition
(Mach 0.27), but was prevented due to excessive vibration of the LDV system. The
measurements obtained above were used to compare Pratt & Whitney’s CFD pre-test
predictions to the LDV data. Upon good agreement, the CFD results were then used as input
to NASA Lewis’s MGB code, which was then compared to the measured noise data.

Prior to conducting tests at the NATR in 1996, two modifications were incorporated which
had a substantial impact on the results of the testing and therefore need to be mentioned. The
first difference was that in 1994 the fan flow was unheated, whereas in 1996 the NATR
facility was modified to heat the fan flow, which allowed for a better simulation of full-scale
engine conditions. The second difference between 1994 and 1996 testing was the location of
both the core and fan charging station locations. The pressures and temperatures in the full-
scale engine are measured at the interface of the engine exit and the entrance to the exhaust
systemn (i.e., entrance to the mixer). Therefore it was desired to set the pressures and
temperatures at the same locations for the model-scale testing. This axial location is marked
with a vertical dashed line on Figure 5.3.1.1, and is labeled “desired” model charging station
location. However, in 1994 due to lack of instrumentation, the pressures and temperatures of
the core flow and the temperatures of the fan flow prior to the mixer entrance had to be
estimated based on analysis of the upstream jet exit rig charging station data (station 113.5 of
Figure 5.3.1.1). However, since there was a pressure probe (labeled PW) in the fan stream at
the entrance to the mixer, the fan pressure was the only parameter that was not estimated. In
1996 a new model charging station (Figure 5.3.2.1) was designed and fabricated, thus
eliminating the need to estimate temperature and pressure profiles going into the mixer. A
further discussion of the charging station locations for 1994, and 1996 can be found in
Sections 5.3.1 and 5.3.2, respectively.

In 1996 both noise and aerodynamic measurements were again obtained at NASA’s NATR
facility. Since all of the mixers that were tested for noise in 1994 were re-tested in 1996 with
heated fan flow and due to the charging station differences, the analysis in this report
emphasizes the noise data obtained in 1996. Far-field noise data and total pressure and
temperature traverse measurements in the jet plume at four axial locations were obtained.
These traverse measurements were made in lieu of LDV measurements, which would have
required more time than was available. The traverse measurements were taken at power
condition number eight (Table 3.2), with the tunnel Mach number set to (.27, since this
closely represented the takeoff flight noise certification condition for the MD-80 aircraft.
Traverse measurements of four mixers were conducted; the 12, 20, ATM, and a new 24-lobe
mixer.
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Noise testing was conducted for all mixers that were tested in 1994 as well as the new 24-
lobe mixer. Based on CFD analysis, the 24-lobe mixer showed a reduction in peak jet
velocity relative to the 20-lobe mixer, and as a result the 24-lobe was expected to be quieter
than the 20-lobe mixer. CFD analysis also showed that a lower peak velocity for the 20-lobe
mixer could be achieved by cutting back every other lobe. The cutting back of lobes creates a
scarf angle at the lobe exit as shown on Figure 4.2.2. Based on this analysis noise testing was
first conducted on the 20-lobe mixer with zero scarf angle, and then every other lobe was cut
back 12 degrees. The result was a mixer with an alternating scarf angle of 0 and 12 degrees.
See Figure 4.2.3.1 for a picture showing a side view of the 20-lobe mixer with an alternating
scarf angle of (0/12 degrees). See Figures 4.2.1.1 to 4.2.6.1 for pictures of all of the mixers
tested in 1996, including the 24-lobe mixer.

In addition to noise testing of different mixers, testing was also conducted with various
changes in the flow path both upstream and downstream of the mixer. The changes upstream
consisted of the incorporation of simulated engine probes to determine their impact on the
performance of the mixers, (see Figure 4.4.1 for a picture of the probes). Changes
downstream consisted of an enhanced mixing device concept called vortex generators, which
were essentially low-profile triangular shaped wedges that were attached to the tailplug (see
Figure 4.3.1.1). The intent of the vortex generators was to promote additional mixing in the
exhaust duct prior to the nozzle exit. Testing was also conducted with a scale-model version
of a device called a “muffler”, that has been proven to reduce combustion noise on the JT8D-
200 engine models. This device is a Helmholtz resonator that is tuned for low frequency
combustion noise. Refer to Figure 4.5.1 for a picture of the muffler. The intent of this test
was to determine if the muffler could cause an adverse effect on the mixing process
downstream of the mixer, and also if noise would be generated due to flow over the open
slots. This concemn was a raised based on full-scale engine testing with the muffler that had
been conducted at P&W'’s facility prior to conducting the model tests.
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3.0  TEST OBJECTIVES

NASA’s overall test objectives for the LET Task XXXVII were to research, design and
develop mixers for reducing the jet noise of aircraft powered by low by-pass ratio
(approximately 1.7 BPR) engines and also aircraft powered by high by-pass ratio
(approximately 6 BPR) engines without producing significant drag penalties. The goal was
to reduce the sideline noise during takeoff by at least 3 EPNdB relative to their respective
1992 noise levels.

P&W's test objective, a subset of NASA’s overall test objective, was to:

1) conduct LDV testing at NASA Lewis in order to calibrate the contractor’s internal
CFD design system (developed under P&W funding) and

2) enhance the MGB (theoretical jet noise prediction developed by Mani et al.’)
capability that could be used for the design of improved mixers for low by-pass ratio
engines in a timely and cost effective manner.

The ultimate goal is to assess design methods based on computational fluid dynamics (CFD)
and computational aeroacoustics (CAA) codes that are capable of predicting both far-field jet
noise and performance impact of mixed-flow exhaust systems. Pratt & Whitney’s specific
objective was to use the calibrated CFD and MGB codes to design and develop an advanced
mixer to achieve a substantial jet noise reduction for Pratt & Whitney’s low by-pass ratio
JT8D-200 turbofan engine. This engine powers the MD-80 aircraft, which is currently
certified to FAR 36 Stage 3 noise limits.

To achieve the objectives stated above, two phases of testing were conducted at NASA’s
NATR facility. The first phase was conducted in 1994 with unheated fan flow, and the
second phase of testing was conducted in 1996 with heated fan flow.

3.1 1994 (PHASE I) TEST OBJECTIVES and TARGET TEST CONDITIONS
(unheated fan flow)

The intent of the model-scale testing was to duplicate full-scale engine conditions as close as
possible, therefore it was desired to heat both the core flow and the fan flow. However the
NATR did not have the capability to heat the fan flow, and as a result the model-scale
conditions were not an accurate simulation of the full-scale engine conditions. However
testing was conducted with the following objectives:

1. Establish a reference level of far-field jet noise for a mixed-flow exhaust system
incorporating a 12-lobe mixer that is representative of the current JTSD-200 mixer. The jet
noise is defined in terms of its effective perceived noise level (EPNL) as derived from data
measured by an array of far-field microphones. Data was obtained over a range of engine
power conditions from takeoff to approach for two conditions of simulated flight speed; static
and 0.27 Mach number.
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2. Obtain far-field jet noise for two additional mixer designs, a 20-lobe mixer and the
Advanced Technology Mixer (ATM), which was designed using CFD under Pratt & Whitney
internal funding. These two mixers represented an initial design concept for reduced jet
noise based on a more uniform velocity profile than the baseline 12-lobe mixer.

3. Obtain far-field jet noise data for an axisymmetric splitter configuration at a more limited
set of conditions than described above for the mixer configurations. This case was included
for purposes of CFD/CAA code calibration.

4. Obtain detailed laser Doppler velocimetry (LDV) data in the exhaust duct and jet at one
engine power condition for four nozzle configurations: the axisymmetric splitter; the
reference 12-lobe mixer; the 20-lobe mixer and the ATM. The LDV data include both mean
velocities and turbulence intensities. These data were used to calibrate the CFD codes and
associated Reynolds-averaged turbulence models, and to verify that the velocity field
information required as input to the CAA code was being accurately computed.

TABLE 3.1: 1994 TARGET TEST CONDITIONS (unheated fan flow)

POWER TTcore PTcore ~ TTfan PTfan FLIGHT

CONDITION To Po To Po CONDITION
1 2.29 1.46 1.0 1.44 APPROACH
2 2.34 1.51 1.0 1.48
3 2.36 1.54 L0 1.50
4 2.38 1.57 1.0 1.53
5 2.43 1.62 1.0 1.57
6 2.56 1.80 1.0 171 CUTBACK
7 2.63 1.88 1.0 1.78
8 2.71 1.98 1.0 1.85 TAKEOFF
9 2.77 2.04 1.0 1.90

3.1.1 FAR-FIELD NOISE MEASUREMENTS and FAR-FIELD NOISE DATA

The far-field noise measurements were acquired at two conditions of simulated flight speed;
static and 0.27 Mach number. Simulated engine power conditions, ranging from approach to
takeoff, are defined in Table 3.1. The pressures and temperatures in the full-scale engine are
measured at the interface of the engine exit and the entrance to the exhaust system (i.e.,
entrance to the mixer). Therefore it was desired to set the pressures and temperatures at the
same locations for the model-scale testing. The pressure ratios and the temperature ratios of
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Table 3.1 are defined relative to the “desired” charging station location. This charging station
location is discussed in detail in Section 5.3.1, and is shown on Figure 5.3.1.1. A complete
noise test of a given exhaust system configuration consisted of acquiring the far-field noise
data for all power conditions, first for static external condition and then again at the 0.27
external Mach number condition. The nozzle pressure and temperature ratios were set to the
same values for both external flow conditions. The intent was to define the effects of
forward flight on noise at constant exhaust mixed jet Mach number (Vmix/Co).

The far-field noise data received from NASA was sound pressure level (SPL) at full-scale,
150-foot radius, for an acoustic standard day condition (i.e., 77 degrees F, 70% R.H.), with
all of the corrections applied that are discussed in Section 6.0. The sound pressure level for
both static (0.0 Mach number), and flight (0.27 Mach number) were supplied to Pratt &
Whitney on 3.5-inch diskettes.

3.1.2 AERODYNAMIC DATA MEASUREMENTS (LDV) and LDV MEASURED
DATA MATRIX

Since taking laser Doppler velocimetry (LDV) data was a time consuming process, and since
the intent of the test was to obtain a detailed resolution of the velocity field, it was decided to
obtain LDV data at only one power condition. The flow condition chosen to conduct all
LDV testing was power condition 8 (Table 3.1) at a flight Mach number of 0.10. A Mach
number of 0.27 was desired to match the sideline during takeoff acoustic certification
condition for the JT8D-200 powered MD-80 aircraft, but was prevented due to excessive
vibration of the LDV system. Data were obtained at the nozzle exit plane and several
downstream locations, as far as 6(D) nozzle diameters. A summary of the LDV data obtained
can be found in Table 3.1.2.1. A discussion of LDV testing can be found in Section 5.5.2,
and a summary of the results can be found in Section 7.2. Also refer to Figure 5.5.2.1 for a
picture of the LDV scan rig and NATR.
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Table 3.1.2.1; LDV Measured Data Matrix

Date Runs Configuration X/D Comments
7/26/94 374-408 Splitter 0
409-457 Splitter 4
458-472 Splitter 2
7/28/94 491-532 Splitter 0 Repeat
533-566 Splitter 2 Repeat
7/29/94 567-691 20 0
692-774 20 |
9/12/94 872-968 20 2
969-990 20 4
9/13/94 991-1049 12 0
1050-1106 12 2
9/19/94 1107-1168 12 4
1169-1188 12 6
9/20/94 1189-1246 ATM 0
1247-1305 ATM 2
1306-1362 ATM 4
1363-1392 ATM 0 Repeat
9/21/94 1393-1450 ATM 6
1451-1489 ATM 1 Radial Surveys
9/26/94 1513-1548 ATM Int
Splitter Int
9/28/94 1683-1716 12 Int

3.2 1996 (PHASE II) TEST OBJECTIVES and TARGET TEST CONDITIONS
(heated fan flow)

The intent of the model-scale testing was to duplicate full-scale engine conditions as close as
possible, therefore it was desired to heat both the core flow and the fan flow. Prior to testing
in 1996, the NATR was modified so that the fan flow could be heated. As a result the nozzle
model conditions simulated the full-scale engine conditions. Testing was conducted with the
following objectives:

1. Establish far-field jet noise levels for the splitter, 12-lobe, 20-lobe, 24-lobe, and ATM
mixers. The data were obtained over a range of simulated engine power conditions from
take-off to approach and for two conditions of simulated flight speed; static and 0.27 Mach
number.

2. Obtain jet noise data for the 20-lobe mixer with two different scarf angles at the same
power conditions as above.
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3. Obtain jet noise data for one configuration of an advanced mixing concept: Vortex
Generators (VGs) at the same power conditions as above. Here the VGs refer to low profile
triangular shaped surfaces that are mounted on the tailplug.

4. Obtain total pressure and temperature data in the exhaust duct and plume at one engine
power condition for four configurations which, were chosen based on the results of the
acoustic testing. These configurations were the 12-lobe, 20-lobe 24-lobe, and the ATM.
Data were acquired with extemnal flow simulating a 0.27 Mach number flight condition.

TABLE 3.2: 1996 TARGET TEST CONDITIONS (heated fan flow)

POWER TTcore PTcore TTfan PTfan FLIGHT

CONDITION To Po To Po CONDITION
1 2.29 1.46 1.16 1.44 APPROACH
2 2.34 1.51 1.17 1.48
3 2.36 1.54 1.17 1.50
4 2.38 157 1.18 1.53
5 2.43 1.62 1.19 1.57
6 2.56 1.80 1.22 1.71 CUTBACK
7 2.63 1.88 1.24 1.78
8 2.71 1.98 1.26 1.85 TAKEOFF
9 2.77 2.04 1.27 1.90

3.2.1 FAR-FIELD NOISE MEASUREMENTS and FAR-FIELD NOISE DATA

Far-field noise measurements were acquired at two conditions of simulated flight speed;
static and 0.27 Mach number. Simulated engine power conditions, ranging from approach to
takeoff, are defined in Table 3.2. The pressure ratios shown in Table 3.2 are defined relative
to the reference charging station for the exhaust system. Prior to this test, a new model
charging station was designed and fabricated eliminating the need to estimate temperature
and pressure profiles going into the mixer as was done for 1994 testing. Section 5.3.2
discusses the charging station location in some detail, and Figure 5.3.2.1 shows the location
of the charging station. A complete noise test of a given exhaust system configuration
consisted of acquiring the far-field noise data for all power conditions, first for static external
conditions and then again at the 0.27 external Mach number condition. The nozzle pressure
and temperature ratios were set to the same values for both external flow conditions. The
intent was to define the effects of forward flight on noise at constant exhaust mixed jet Mach
number (Vmix/Cgp).
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The far-field noise data received from NASA was sound pressure level (SPL) at full-scale,
150-foot radius, for an acoustic standard day condition (i.e., 77 degrees F, 70% R.H.), with
all of the corrections applied that are discussed in Section 6.0. The sound pressure level for
both static (0.0 Mach number), and flight (0.27 Mach number) were supplied to Pratt &
Whitney on 3.5-inch diskettes.

3.22 AERODYNAMIC DATA MEASUREMENTS (Flow Field) with
CHARGING STATION CONDITIONS FOR TEMPERATURE and
PRESSURE TRAVERSES

The diagnostic aerodynamic data of main interest are the total pressure and total temperature
traverse measurements in the jet exhaust. These measurements were made in lieu of LDV
measurements, which required more time than was available for the test. The measurements
were taken at power condition number 8 (Table 3.2), with the tunnel Mach number set to
0.27, since this closely represents the sideline during takeoff flight noise certification
condition for the JT8D-200 powered MD-80 aircraft. A summary of the downstream axial
locations and charging station conditions for the temperature and pressure traverses can be
found in Table 3.2.2.1. A discussion of the temperature and pressure traverse can be found in
Section 5.5.3, and a discussion of the results in Section 7.3. Also refer to Figure 5.5.3.1 for a
view of the traverse planes downstream of the nozzle exit, and traverse density across the
exhaust jet.
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Table 3.2.2.1: Charging Station Conditions for Temperature and Pressure Traverses

Case X Pt/Pa Core | Pt/PaFan Mcore
Loc.
Runs | Tt/Ta Core | Tt/Ta Fan Mfan
12-lobe 1.0” | 1014 2.035 1.896 3.064
Pa=14.14 Ta=65F 2.802 1.275 6.49
2.57 | 1013 2.030 1.889 3.62
2.801 1.272 6.48
5.0” | 1012 2.033 1.886 3.59
2.787 1.270 6.48
10.0” | 1011 2.039 1.898 342
2774 1.281 6.49
20-lobe 1.07 964 2.039 1.879 3,71
Pa=14.27 Ta=45F 2.805 1.280 6.53
2.5 965 2.044 1.888 3.72
2.811 1.286 6.59
NO DATA 5.07
NO DATA 10.0”
24-lobe 1.0 994 2.043 1.907 3.20
Pa=14.27 Ta=45F 2.782 1.009 7.11
2.5” 993 2.038 1.905 3.43
2.770 1.009 7.12
5.07 992 2.035 1.902 3.50
2.778 1.009 7.11
10.07 | 988 2.042 1.892 3.45
2.792 1.274 6.51
ATM 1.07 949 2.055 1.894 3.52
Pa=14.07 Ta=59F 2.809 1.289 6.39
2.57 951 2.041 1.888 3.58
2.775 1.278 7 6.47
5.0 952 2.043 1.886 3.53
2.783 1.282 6.47
10.07 | 954 2.045 1.891 3.55
2.786 1.289 6.51
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4.0  DESCRIPTION OF MODELS TESTED

A total of four 1/7th scale-model intemal mixers and a splitter configuration were fabricated
by Pratt & Whitney and tested at NASA’s NATR facility in 1994 and 1996. In addition to
testing various exhaust nozzle configurations, the effect of simulated engine probes, and
muffler (tuned for full-scale combustor noise) were tested. Also tested were an enhanced
mixing device concept called Vortex Generators, which were mounted on the tailplug. The
intent of these devices were to promote additional mixing in the exhaust duct, prior to exiting
the nozzle. Section 4.1 through 4.5 discusses the configurations tested in more detail.

4.1 SPLITTER EXHAUST NOZZLE CONFIGURATION

The splitter is a simple body of revolution part. Its trailing edge is located at approximately
the same axial station as those of the mixers, and is designed to run at the same by-pass ratio
as the mixer configurations. Figure 2.0.2 shows a schematic of a splitter, and a typical lobe
mixer. A picture of the splitter can be found on Figure 4.1.1, along with the tailcone/tailplug
hardware. This axisymmetric splitter was tested for noise in 1994 (unheated fan flow), and
also in 1996 (heated fan flow). This configuration was tested for purposes of both CFD and
CAA code calibration.

42  MIXED EXHAUST NOZZLE CONFIGURATIONS and GEOMETRIC
PARAMETERS

In 1994 (with unheated fan flow), both noise and aerodynamic (i.e., LDV) data were obtained
for three mixed exhaust nozzle configurations. The three mixer designs tested were the 12-
lobe (baseline), 20-lobe, and the Advanced Technology Mixer (ATM). The ATM was tested
first without lobe scallops, and then with lobe scallops. Figure 4.2.2 is a schematic view of a
typical mixer showing an example of a lobe scallop. In 1996 (with heated fan flow), both
noise and aerodynamic (i.e., total temperature and total pressure traverse) data were obtained
for a total of five mixed exhaust configurations. Three of the five mixers that were tested in
1994 with unheated fan flow were also tested in 1996 with heated fan flow. Two additional
mixed configurations were tested in 1996. These were a new 24-lobe mixer, and a
modification to the 20-lobe. The modification was the introduction of an alternating scarf
angle of (0/12 degrees). Figure 4.2.2 is a schematic view of a typical mixer showing the scarf
angle. Based on pre-test CFD analysis it was determined that both the 24-lobe and the 20-
lobe mixer with alternating scarf angle were both shown to have a reduced peak jet velocity
relative to the 20-lobe mixer with zero scarf angle. Each mixer configuration is discussed in
more detail below. The mixed exhaust nozzle geometric parameters are defined on Figure
4.2.1, and the full-scale geometric parameter values for all four mixers are supplied in Table
4.2. All of the mixers, with the exception of the 24-lobe mixer, were designed and fabricated
under Pratt & Whitney internal funding.
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Table 4.2 FULL-SCALE MIXED EXHAUST NOZZLE GEOMETRIC PARAMETERS
(Units in Inches)

Parameter 12-Lobe 20-Lobe 24-Lobe ATM
Core flow area 615 615 615 615
Fan flow area 1105 1105 1105 1105
Nozzle exit area (A8) 1098 1098 1098 1098
Lobe length, L 18.6 18.6 18.6 18.6
Lobe height, h 11.7 11.7 11.7 11.7
Lobe radius, R 22.1 22.1 22.1 —
Sublobe valley radius (ATM), R1 - - - 18.5
Sublobe crest radius (ATM), R2 -—-- - - 22.1
Max lobe width, Wmax 45 2.6 2.0 4.7
Min lobe width, Wmin 2.4 2.2 1.4 2.3
Valley angle, 0, 22 22 22 22
Max depth of scallop, D 5.2 5.3 5.2 5.2
Flowpath height, H 25.4 25.4 25.4 25.4
Plug radius, Rp 9.6 9.6 9.6 9.6

42.1 12-LOBE (BASELINE) MIXER

The MD-80 aircraft, which is powered by Pratt & Whitney JT8D-200 series engines, was
certified to stage 3 noise limits in 1979. The JT8D-200 has a by-pass ratio of approximately
1.7, and has an internal 12-lobe mixer to reduce the jet noise generated by this engine model.
This mixer is representative of mid-1980 low-BPR mixer technology, and therefore was the
baseline mixer for this entire test program. The mixer trailing edge has a zero scarf angle,
and the lobes are scalloped. Pictures of the 12-lobe (Baseline) mixer can be found on Figure
42.1.1.

42.2 20-LOBE MIXER

This mixer was designed to be a parametric variation on lobe count relative to the 12-lobe
mixer. The scarf angle, scallop, lobe peak and valley trough lines are identical to that of the
12-lobe mixer. Pictures of the 20-lobe mixer, with zero scarf angle can be found on Figure
422.1.

423 20-LOBE MIXER WITH ALTERNATING SCARF ANGLE (0/12 degrees)
This mixer is the same as was described in Section 4.2.2, with the addition of an alternating
scarf angle of 0 and 12 degrees. CFD analysis showed that the peak exhaust velocity was

reduced relative to the 20-lobe mixer with zero scarf angle, and therefore was expected to be
quieter. Figure 4.2.3.1 is a photo of the side view showing the altemating scarf angle.
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4.2.4 24-LOBE MIXER

This mixer was designed to be a parametric variation on lobe count relative to the 12-lobe
mixer. The scarf angle, scallop, lobe peak and valley trough lines are identical to that of the
12-lobe mixer. Pre-test CFD analysis of this mixer indicated that the peak exhaust velocity
was reduced relative to the 20-lobe mixer with zero scarf angle (Section 4.2.2). Figure
4.2.4.1 is a photo of the 24-lobe mixer.

42.5 ADVANCED TECHNOLOGY MIXER (ATM)

A CFD design study was carried out in the early part of 1994 to generate an additional
candidate mixer for the model testing conducted at NASA’s NATR. This study was a P&W
funded effort, separate from the NASA contract. Results of calculations for the existing 12-
and 20-lobe mixers showed that a “region of high temperature” or high velocity region
persisted downstream of each lobe peak. The effect of scallops were shown to better mix out
the flow in the mid span region, but the “region of high temperature” was essentially
unaffected. The double lobe mixer concept was developed to attack this “region of high
temperature” that persists downstream of the lobe peak. The initial design has 16 primary
lobes, and the outer portion of each primary lobe bifurcates into two smaller secondary lobes
separated by a small fan air chute (i.e., mini-chute), which lets cold air into the former
“region of high temperature”. Figure 4.2.5.1 is a photo of the ATM, without lobe scallops.
The ATM similar to the 12-lobe mixer has a zero scarf angle.

42.6 ADVANCED TECHNOLOGY MIXER WITH LOBE SCALLOPS

Section 4.2.5 discusses the evolution of the Advanced Technology Mixer design, which also
applies here, as well as the incorporation of lobe scallops.

43  MIXING ENHANCING DEVICE/CONCEPT
43.1 VORTEX GENERATORS (VGs)

The model primary tailplug was fitted with small low profile triangular shaped wedges in an
attempt to further mix out the flow. Figure 4.3.1.1 shows a schematic view of these devices,
and also shows their location on the tailplug. These devices were designated Vortex
Generators (VGs) and were tested with the 20-Iobe mixer. Analysis has shown that there was
deficit in the radial velocity profile in the region just downstream of the mixer, which could
be eliminated or reduced by the use of these Vortex Generators.

44  SIMULATED ENGINE PROBES

Prior to conducting model testing at NASA in 1996, P&W was concemed that the 8 full-scale
engine probes were having a negative impact on the noise reduction of the mixer, and there
was also a concern raised that the probes could generate a tone. As a result eight 1/7th scale-
model probes were built and tested. Figure 4.4.1 shows a picture of the upstream simulated
engine probes that were tested.
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4.5 MUFFLER (For Full-Scale Engine Combustor Noise)

Pratt & Whitney had determined from full-scale engine noise testing in the mid 1980s that
combustion noise was an important source in the JT8D-200 series engines spectral data. It
was also determined that the full noise reduction benefit of the 12-lobe mixer could not be
realized unless the combustion noise could be reduced. As a result a muffler (essentially a
Helmbholtz resonator tuned for 315 Hz-400 Hz) was designed and built by Pratt & Whitney.
Similar to the engine probes of Section 4.4, there was a concern that the muffler, which is
located immediately downstream of the mixer exit, could have a negative impact on the noise
reduction features of the internal mixers. A photo of the muffler is shown on Figure 4.5.1.
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5.0  TEST FACILITY AND TEST METHODS

In 1994, and 1996 both noise and aecrodynamic measurements were obtained at NASA Lewis
Research Center’s Aeroacoustic Propulsion Laboratory (APL). A picture of the APL is
shown on Figure 5.0.1. The APL consists of the Nozzle Acoustic Test Rig (NATR) and the
65-foot radius Anechoic Hemispherical Dome. Far-field acoustic data were measured using a
50-foot radius microphone array centered at the test nozzle exit plane. A detailed description
of the test facility, test procedures, acoustic data acquisition and data reduction can be found
in References 1, and 27.

5.1 NOZZLE ACOUSTIC TEST RIG (NATR)

The NATR consists of the 53-inch diameter free-jet duct section and the Jet Exit Rig (JER).
The free-jet is driven by an annular air ejector system that entrains ambient air through a
plenum and a transition bellmouth section and expels the air through a 53-inch inner diameter
free-jet duct with a centerline height of 120-inches. The system can produce free-jet Mach
numbers up to 0.3. A contraction nozzle, with a 7° contraction angle was installed at the exit
plane of the 53" free-jet duct for all testing. The contraction nozzle was used to accelerate
the airflow and thereby reduce the extemal boundary layer on the JER. The JER is the
structure through which airflows are delivered to the core and fan nozzles via connections to
the facility’s compressed air supply systems. Figure 5.1.3 shows a schematic view of the Jet
Exit Rig (JER). The core nozzle airflow is heated by a combustor using hydrogen as fuel.
The fan nozzle airflow is heated by electric heaters (available for 1996 phase of testing only).
Exhaust gases from the free-jet and jet rig are expelled through the 43-ft high by 55-ft wide
exhaust door downstream of the jet rig. A 60-inch diameter exhaust fan in the top of the
dome provides air circulation. Figure 5.0.2 shows a picture of the NATR and the acoustic
anechoic test arena. Figure 5.1.1 shows a schematic view of the model assembly attached to
the JER with key axial stations identified and also shows the JER charging instrumentation at
station 113.5. Figure 5.1.2 shows the model external flowpath with contraction nozzle, and
the NATR with model assembly attached.

5.2 ANECHOIC TEST AREA

The anechoic test arena is a 65-ft radius hemispherical dome. The walls of the dome and half
the floor area are treated with acoustic wedges. The untreated half of the floor, occupied by
the Power Lift Rig (PLR), has an acoustically treated wall installed near the NATR exit plane
and extending aft along the untreated floor to shield unwanted sound reflections from the
untreated floor area and other test equipment. The floor area in front of the test nozzle was
treated with wedges prior to actual acoustic data acquisition. Microphones for the acoustic
data acquisition are located along a 50-ft radius arc centered at the exit plane of the test
nozzle. These microphones are mounted on 10-ft poles bolted to the treated floor. The angle
locations for the microphones are from 50 to 160 degrees at intervals of every 5 degrees.
Figure 5.0.2 shows a picture of the 50-ft radius microphone array, and the anechoic test area.
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53 FACILITY INSTRUMENTATION

The NATR/JER instrumentation provides data on test variables such as free-jet Mach
number, fan nozzle pressure ratio, core nozzle pressure ratio, fan flow temperature, core flow
temperature, and airflow rates for the core and fan nozzles. The facility is not configured for
nozzle thrust measurements. Four (4) total pressure/temperature rakes are installed at the
charging station (i.e., 113.5) of the fan and core ducts of the JER, as shown on Figure 5.1.1.
The four radial rakes are spaced 90 degrees apart, and each rake has five (5) total pressure
and five (5) total temperature sensors. The instrumentation system can display all twenty
individual values or an averaged value for the total pressure and temperature. Flow venturi
located in the compressed air supply lines give the flow rates of the core and fan streams.

5.3.1 EXHAUST NOZZLE CHARGING STATION LOCATION (1994)

The pressures and temperatures in the full-scale engine are measured at the interface of the
engine exit and the entrance to the exhaust system (i.e., entrance to the mixer). Therefore it is
desired to set the pressures and temperatures for model-scale testing at the same respective
location. Figure 5.3.1.1 shows this location as the “Desired” charging station. Since there
were no pressure or temperature probes in the primary stream or temperature probes in the
fan stream at the “Desired” location, the values had to be estimated based on measurements
obtained at the upstream jet exit rig charging station (i.e., 113.5). This was accomplished by
applying an approximated pressure and temperature drop to the primary stream pressure and
temperature values obtained at the JER charging station (i.e., 113.5). The temperature and
pressure drop between the JER charging station and the “Desired” charging station was
estimated prior to the start of the test. The fan temperatures at the “Desired” charging station
also had to be approximated by applying a slight increase in temperature (due to conduction
from the primary stream) to the values obtained at the JER charging station. Similar to the
primary stream, the temperature increase of the fan stream between station 113.5 and the
“Desired” charging station was estimated prior to the start of the test. Therefore, the
pressures and temperatures set at station 113.5 for the primary stream were slightly higher
than the values shown in Table 3.1. The fan temperature at the “Desired” charging station
location was estimated to be slightly higher than the values shown in Table 3.1. Since there
were P&W supplied pressure probes at the “Desired” charging station, the fan pressures did
not have to be estimated, and therefore were set to the values shown in Table 3.1.

5.3.2 EXHAUST NOZZLE CHARGING STATION LOCATION (1996)

The pressures and temperatures in the full-scale engine are measured at the interface of the
engine exit and the entrance to the exhaust system (i.e., entrance to the mixer). Therefore it is
desired to set the pressures and temperatures for model-scale testing at the same respective
location. In 1996, a model charging station (located at the mixer entrance) was designed and
fabricated which eliminated the need to estimate temperature and pressure profiles going into
the mixer, as was done in 1994. Therefore the pressures and temperature values at the
entrance of the mixer were set to the values as shown in Table 3.2. The charging station
locations are shown on Figure 5.3.2.1, and are labeled A-A and B-B for the primary, and
bypass streams, respectively.

NASA/CR—2001-210571 20



5.4  ACOUSTICS TEST MATRIX

The target pressure and temperature ratios for the model test (Table 3.2) were defined based
on full-scale engine conditions of the low by-pass ratio (1.7) JT8D-200 turbofan engine. This
engine incorporates a 12-lobe (baseline) mixer, and is certified on the MD-80 aircraft. The
target test conditions for the model are defined relative to a charging station located at the
mixer entrance, as shown on figure 5.3.2.1. This charging station location was selected since
the pressures and temperatures of the full-scale engine are measured at the same respective
axial location. Far-field noise measurements were obtained for engine conditions ranging
from approach to takeoff power, for two conditions of simulated flight speed; static and 0.27
Mach number. The pressure and temperature ratios were set to the same values for both
external flow conditions; static and simulated flight. The intent is to define the effects of
forward flight on noise at constant exhaust mixed jet Mach number (Vmix/Co).

535 TEST METHODS

NASA Lewis was responsible for the acquisition and the reduction of all of the acoustic data.
Refer to Section 6.0 for a discussion on the data acquisition and reduction procedures used by
NASA. Full-scale, 150-foot radius corrected Sound Pressure Level (SPL) data was supplied
to Pratt & Whitney on 3.5-inch diskettes.

5.5.1 ACOUSTIC TESTING

To assess the noise reduction potential of the various mixer designs, it is required to establish
a reference level of far-field jet noise for a mixed-flow exhaust system incorporating the 12-
lobe (baseline) mixer. The jet noise is defined in terms of its Effective Perceived Noise Level
(EPNL) as derived from data measured by an array of far-field microphones. Data is
obtained over a range of engine power conditions, from approach to takeoff, and for two
conditions of simulated flight speed; static and 0.27 Mach number. The range of engine
powers at a simulated flight speed of 0.27 Mach number will allow for an EPNL comparison
of all candidate mixer designs relative to the 12-lobe mixer at the three noise certification
conditions. A complete noise test of a given exhaust system configuration consisted of
acquiring far-field noise data for all power conditions, first for static external condition and
then again at the 0.27 external Mach number condition. The nozzle pressure and temperature
ratios were set to the same values for both external flow conditions. The intent was to define
the effects of forward flight on noise at constant exhaust mixed jet Mach number (Vmix/Co).

5.5.2 LDV TESTING

The LDV test requirements were to obtain a set of highly accurate, highly detailed flow field
data for calibrating CFD design codes. The output of these CFD codes is used as input to
CAA codes, which then estimate the noise produced from a nozzle operating at a specified
condition. The key flow field features of interest are the shear layers at the interface between
the primary and secondary flow streams, and the shear layers between the nozzle exhaust jet
and the free-jet flow. Noise is created in these shear layers and it is necessary for the CFD
codes to accurately predict the mean velocity gradients and the turbulence intensities within
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these layers in order for the CAA codes to accurately predict the acoustics. Therefore, the
data requirements for the LDV testing were: 1) to accurately resolve the shear layers in terms
of mean velocity fields, 2) define how rapidly the core and bypass flows mix-out, and 3)
provide quantitative turbulence intensity levels within the exhaust duct and the near-field jet.

Given the data requirements, the following were considered in the development of the LDV

system:

e The nozzle exhaust flow was expected to be at a very high velocity. Preliminary CFD
calculations indicated that in the case of the reference splitter configuration, where the
mixing between the core and bypass flows is relatively limited, velocities approaching
1900 ft/sec (579 m/sec) could be expected. The LDV system optics and signal processing
electronics would have to be chosen such that this high velocity could be measured.

e High flow accelerations would occur. The highest accelerations were expected just
downstream of the nozzle exit, where the exhaust flow expands to ambient pressure. The
LDV seed material would have to be small enough to follow the flow accelerations with
negligible lag. The LDV system receiving optics would have to be able to "see” these
small particles.

o The flow exiting the mixer could be thought of as circumferentially periodic but not
axisymmetric. Therefore it would be necessary to map the flow within a pie-slice shaped
sector extending circumferentially over at least one half of a lobe.

s The LDV laser and optical components would have to be located outside the jet flow
created by the 53-inch (1.35-M) diameter NATR. Otherwise, the impingement of the
flow might vibrate the laser and/or misalign the LDV system optics. Vibration could
misalign the mirrors within the laser resulting in a decrease in laser beam power.

e Three separate flows - the nozzle core, the nozzle bypass, and the free-jet - are being
mixed within the nozzle exhaust plume. In order for the LDV to accurately measure the
time-averaged, mean velocity flow field within the plume, it would be necessary to seed
each of these flows separately.

e To simulate actual turbofan engine operating conditions, the primary flow would be
heated to a total temperature of 1440 degrees Rankine during the LDV testing. A solid
seed material with a melting point above this operating temperature would be required.

The above considerations led to the development of an orthogonal, three component,
forward-scatter LDV system. This system is described in the following sections.

Traverse System: For an LDV system to generate adequate signals off of these submicron
particles, it is best to place the receiving optics so that they collect the light scattered by the
particles in the "forward" direction (i.e., place the receiving optics on the side of the probe
volume opposite that of the lens used to cross the laser beams). This forward scatter
arrangement is preferred since the submicron seed particles scatter light much more
effectively in the forward direction. A major difficulty in employing a forward scatter
arrangement involves the requirement that the receiving optics remain focused on the probe
volume as the probe volume is moved to different locations in the flow field. The most
reliable means of doing this is to traverse both sets of optics in unison using a single
traversing system. A photograph of the scan rig developed for the APL is shown in Figure
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5.5.2.1. The scan rig is operated remotely from the LDV control room. A detailed description
of the LDV system can be found in Reference 5. Both the seeder and scan rig were removed
for acoustic testing.

Seeding: There were two requirements for the LDV seeding material. One, it had to have a
melting point temperature above the 1440 degrees Rankine stagnation temperature of the core
flow; and, two, it had to be in the size range of about 0.5 to 1.0 micron. This size range is
preferred since these particles would be small enough to follow the flow, yet big enough to
generate adequate Doppler signals. There are a number of metal oxide powders, which are
sold as satisfying these criteria, including alumina and titanium dioxide. Unfortunately, even
though product specifications may indicate that a powder is commercially available within a
desired size range, interparticle forces cause the particles to agglomerate to the point that
when they arrive from the manufacturer, most of the particles are too big to adequately follow
a rapidly accelerating flow.

For the LDV test in the APL, it was decided to use a method of seeding with metal oxide
particles. With this method, rather than using a dry powder, the metal oxide is suspended in a
liquid. While in solution the agglomerated particles are broken apart using a sonicator and/or
a laboratory blender. The evaporation of the liquid droplets leaves behind a dry aerosol of
seed particles of the desired size. By continuously spraying the solution into the flow, a
continuous supply of seed particles is maintained. In this test, alumina seed particles were
introduced into three separate flows - the primary model flow, the secondary model flow, and
the external free-jet. The alumina particles were relatively monodisperse with a mean
diameter of 0.7 micron and a standard deviation of 0.2 micron. Two different seed solutions
were created - a 5% by weight alumina in water solution for the internal water flows and a
1% by weight alumina in water solution for the free-jet.

Data Post Processing: Post-test data processing consisted primarily of two functions: 1)
discarding outliers in the velocity histograms and 2) correcting for velocity bias. The new
processors, which employ frequency domain techniques such as the 3107 FDP, provide better
signal detection, noise rejection, and improved accuracy relative to the older counter
processors. In the nozzle test data, there were some histograms, which showed
measurements, which were obviously not generated by particles passing through the probe
volume. As an added measure to ensure that all such bad data were eliminated, each
histogram was replotted after the test, and the outliers were discarded as needed.

Velocity biasing was recognized as a potential problem since the flow in the nozzle exhaust
plume results from the mixing of three separate flows - the nozzle core (primary), the nozzle
bypass (secondary), and the free-jet. Velocity biasing occurs whenever there is a correlation
between data rate and velocity. In this test, the three different flow streams were seeded n an
effort to eliminate velocity biasing. Nevertheless, the data were corrected using a velocity
bias correction method developed by Meyers and Edwards.
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5.5.3 NOZZLE DOWNSTREAM FLOW PLUME SURVEY TESTING (TOTAL
TEMPERATURES & PRESSURES)

Diagnostic aerodynamic measurements of the total pressure and total temperature
downstream of selected mixer nozzle configurations have been made in lieu of LDV
measurements. Previous experience, gained during earlier elements of this program, has
demonstrated that LDV is a time consuming and costly diagnostic technique. In addition,
setup and calibration times have been unreasonably high. The surveys were conducted along
the jet centerline and at several lateral horizontal positions for several axial distances
downstream of the jet. The plume survey rake assembly itself contains four (4) rakes. The left
outboard rake is spaced approximately 4.28-inches from the centerline of the rake assembly
and this rake contains 41 total pressure sensors. The left inboard rake is 1.28-inches from the
rake assembly centerline and this rake contains 41 total temperature sensors. The next two
rakes (i.e., the right outboard and inboard rakes) contain static pressure sensors only.
Typically, traversing the rake assembly in 0.25-inches lateral increments generated a plume
survey. The pressure and temperature probes were laterally offset to avoid interference
effects. This orientation provided a complete, unreplicated view of the exhaust flow field at
locations X =1.0, 2.5, 5.0 and 10.0 inches downstream of the nozzle exit plane. A view of
the traverse planes and traverse density (across the exhaust jet) is shown on Fig. 5.5.3.1.
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6.0 ACOUSTIC DATA ACQUISITION AND REDUCTION PROCEDURES

NASA Lewis Research Center processed the raw acoustic data and applies corrections for:
e microphone pistophone calibrations,
actuator frequency responses,
free-field and grid cap frequency responses,
analogy filter roll-off,
free-jet shear layer refraction corrections,
atmospheric attenuation at test day condition over test distance corrections,
» spherical spreading attenuation corrections, and
e scaling of the data to full-scale (scale factor of 7) and 150-ft radius.
(For test points simulating flight conditions, the free-jet background noise were subtracted
from the measured acoustic data before corrections were applied). Figure 6.0.1 shows a
flowchart of how the acoustic data is processed.

The acoustic and aerodynamic performance (mass flow rates, nozzle discharge coefficients)
data along with test condition (total temperatures, total pressures and calculated jet velocities
and ideal net thrust) information were supplied to Pratt & Whitney by the NASA Lewis
Research Center. The acoustic data points were supplied on 3.5-inch diskettes, and the
aerodynamic data points were generally supplied in excel spreadsheets. Each data point for
all configurations were identified with a unique escort number.

6.1 150-Ft RADIUS (FULL-SCALE) SOUND PRESSURE LEVEL
SPECTRAL DATA

The acoustic data supplied to Pratt & Whitney were corrected 1/3-octave band Sound
Pressure Level (SPL) spectral data scaled up to a 7-scale factor and projected to a 150-ft
radius distance at the acoustic standard day condition (ie., 77 deg. F and 70 % relative
humidity). Refer to Section 6.0 for a discussion of all the corrections that are applied to the
raw acoustic data.

6.2 1500-Ft ALTITUDE/1476-Ft SIDELINE (FULL-SCALE) LEVEL FLYOVER
SPECTRAL DATA AND CALCULATED EFFECTIVE PERCEIVED NOISE
LEVELS (EPNdB)

The data of Section 6.1 was flown through Pratt & Whitney’s flyover prediction deck to
calculate the Effective Perceived Noise Levels. The data was flown for a level flight path at
an altitude of 1500-foot, and a sideline distance of 1476-feet. This was to simulate the
sideline during takeoff noise certification condition for the MD-80 aircraft. The calculated
EPNL values are supplied in two formats, tabular and comparison plots. Tables A-1 through
A-8, in the appendix supply the calculated EPNL values for all of the configurations tested.
Figures 7.1.1.1 to 7.1.1.15 (also in the appendix) supply comparison plots of EPNL versus
mixed jet Mach number for all of the configurations tested. Mixed jet Mach number used
here is defined as the ratio of the fully expanded mixed velocity (fps) at the nozzle exit
divided by the speed of sound calculated from the test day ambient temperature (i.e., V;n/Co).
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7.0  SUMMARY OF TEST RESULTS
7.1 ACOUSTIC SUMMARY FOR ALL TASK 37 CONFIGURATIONS

Tables A-1 through A-8 lists mass flow rates, charging station pressure ratios (i.e., test
conditions), and calculated jet velocities supplied by NASA along with Pratt & Whitney’s
calculated Effective Perceived Noise Levels (EPNLs) for a level flyover at 1500-foot altitude
and sideline distance of 1476-feet. The EPNLs were calculated from the corrected, full-scale,
150-foot radius, standard acoustic day 1/3 octave band sound pressure level (SPL) data
supplied by NASA on 3.5-inch diskettes. Refer to Section 6.0 for a discussion of all the
corrections and adjustments that are applied to the acoustic data. All the EPNL values
supplied in Tables A-1 thru A-8, and all of the comparison plots supplied in Section 7, are for
a 1500-foot altitude, and 1476-foot sideline. Also all of the comparison plots of Sections
7.1.1,7.1.2, 7.1.3, and 7.1.4 are all at a simulated flight speed of 0.27 Mach number, unless
otherwise noted on the plot.

Tables A-1 and A-2 contain data from testing conducted in 1994 only, and as a result all test
points were with cold (i.e., unheated) fan flow. Table A-1 is for a static (0.0 Mach number)
condition, whereas Table A-2 is for a simulated flight condition of 0.27 Mach number.
Tables A-3 through A-8 contain data from testing conducted only in 1996, for all
configurations. Some of the configurations (like the ATM, for example) were tested with
both heated and unheated fan flow, to determine the effect of fan temperature on the noise
results. Table A-3 is for static condition and contains all of the configurations tested,
whereas Tables A-4 through A-8 are for a simulated flight condition of 0.27 Mach number.
Due to the large amount of information at the simulated flight condition, all of the
performance and noise data for each mixer or splitter is supplied in its entirety in its own
table. For example Table A-4 contains only splitter data, and Table A-5 contains only 12-
lobe mixer results.

7.1.1 EPNL VERSUS MIXED JET MACH NUMBER COMPARISON PLOTS

Figures 7.1.1.1 through 7.1.1.15 are all plots of acoustic data obtained in 1996 with heated
fan, except Figure 7.1.1.10 which presents data obtained in 1994 with an unheated fan.
Figures 7.1.1.1 through 7.1.1.15 (except 7.1.1.(2, 4, 6 or 8) are plots of mixed jet Mach
number versus level flyover EPNL at 1500-foot altitude and 1476-foot sideline distance for
various configuration comparisons. Mixed jet Mach number used here is defined as the ratio
of the fully expanded mixed velocity (fps) at the nozzle exit divided by the speed of sound
calculated based on the test day ambient temperature (i.e., V,/Co). The mixed jet Mach
number parameter was used since it reduces EPNL variations due to the daily fluctuations of
the ambient temperature. Figures 7.1.1.2, 4, 6 and 8 are plots of mixed jet Mach number
versus delta EPNL generated from level flyover EPNL values at 1500-foot altitude and 1476-
foot sideline distance for multiple configurations. All of the plots are at a simulated flight
speed of 0.27 Mach number, unless otherwise noted, and all have heated fan flow with the
exception of Figure 7.1.1.10 since the effect of lobe scallops on the ATM was only tested in
1994. The mixed jet Mach number equivalent to a full power takeoff condition for the JT8D-
200-powered MD-80 aircraft is approximately 1.21, and 1.10 at takeoff with cutback power.
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Figure 7.1.1.1 and 7.1.1.2 show the benefit of the 12-lobe (baseline) mixer for this program
relative to a splitter configuration. The 12-lobe mixer achieves as much as 6 EPNL reduction
at high mixed jet Mach numbers, and decreases with a decrease in mixed jet Mach number.

Figure 7.1.1.3 is a comparison of all the mixers tested, and Figure 7.1.1.4 shows the delta
EPNL benefit for all mixers relative to the baseline 12-lobe mixer. This figure seems to
indicate that noise reduction of mixers increases with an increase in mixer lobe count, since
the ATM has 16 major lobes with 16 mini-lobes the ATM could be thought of as having 32-
lobes. From Figure 7.1.1.4 the ATM benefit relative to the 12-lobe baseline mixer is
approximately 1.8 EPNL at a simulated flight speed of 0.27 Mach number. However from
Figures 7.1.1.5 and 7.1.1.7 it is observed that for the static (0 Mn) condition all of the mixers
are essentially equal to the 12-lobe baseline mixer. The majority of the 20-lobe, 24-lobe and
ATM noise reductions relative to the 12-lobe mixer appear for a simulated flight speed of
0.27 Mach number, and minimal reduction (if any) is seen at the static condition.

Figure 7.1.1.9 and 7.1.1.10 show that the incorporation of scarf cut angles, and lobe scallops
(i.e., lobe cutouts) have a small detrimental impact on the noise reduction characteristics of a
specific mixer design. Figures 7.1.1.13 and 7.1.1.14, also show that both the vortex
generators and muffler had very little impact on the EPNL results, for the 20-lobe and ATM,
respectively. Figure 7.1.1.14 actually shows a slight increase due to the incorporation of the
vortex generators with the 20-lobe mixer.

Figure 7.1.1.11 and 7.1.1.12 show that the simulated engine probes increased the EPNL
values for both the 12-lobe and ATM. As will be shown later (from the spectral data) a tone
was induced most likely due to vortex shedding off of the probes. Figure 7.1.1.15 shows the
difference in noise between a mixer with hot fan flow and the same mixer with unheated fan
flow. The ATM with unheated fan flow has higher noise levels than the ATM with heated
fan flow.

7.1.2 PNL VERSUS ANGLE COMPARISON PLOTS

PNL versus angle comparison plots of configurations can be found on Figure 7.1.2.1 through
7.1.2.11, for both a typical MD-80 takeoff, and cutback power. The PNL curves will not be
discussed unless there was a reasonable reduction in EPNL values. Figure 7.1.2.1a and
7.1.2.1b, show a large PNL reduction for the 12-lobe mixer relative to the splitter
configuration, especially at the peak PNL angles, and aft toward 160 degrees.

Figures 7.1.2.2a and 7.1.2.2b, show that the ATM had the largest PNL noise reduction
relative to the baseline 12-lobe mixer at almost all angles, including the angle of peak PNL.
However, at far aft angles the ATM as well as the 20-lobe and 24-lobe mixers show minimal
noise reductions relative to the baseline 12-lobe mixer.
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Figure 7.1.2.3 shows a larger reduction in the PNL directivity in flight for the ATM relative
to the 12-lobe mixer, than is seen at the static (0 Mn) condition. This benefit of flight is seen
at almost all of the angles, with the exception of the far aft angles (i.e., 130 and aft) in which
case the ATM does not appear to show a PNL reduction relative to the 12-lobe mixer. From
Figure 7.1.2.4 it can be seen that both the 20 and 24-lobe mixers show only a slight PNL
reduction relative to the 12-lobe mixer, for both flight and static conditions. This figure also
shows that the noise reduction benefit of both the 20 and 24-lobe mixers relative to the 12-
lobe mixer is slightly larger in flight than at the static (0 Mn) condition. Similar to the results
of the EPNL comparison, the effect of flight primarily benefits the ATM relative to the 12-
lobe mixer.

Figure 7.1.2.11 shows that the PNL directivity is increased by approximately 1 dB for the
ATM with unheated fan flow versus the ATM with heated fan flow, for approximately all
angles.

7.1.3 SPL VERSUS FREQUENCY COMPARISON PLOTS

Similar to the PNL directivity plots, a spectra comparison will be discussed here, only if the
reduction was not insignificant.

Figures 7.1.3.1 through 7.1.3.22 show spectral comparisons for the configurations tested at
both cutback power (condition 5), and takeoff power (condition 8), at 4 angle locations, of
60, 90, 115 (usually peak pnl), and 150 degrees. Figure 7.1.3.1 and 7.1.3.2 show a
substantial low frequency reduction for the 12-lobe (baseline) mixer relative to a splitter
configuration. The spectra at 150 degrees show the biggest reduction for the 12-lobe mixer.
It is also observed that the 12-lobe mixer has higher spectral values between 1000 Hz, and
3000 Hz. This is no surprise since mixers do generate some internal mixing noise due to the
mixing of the fan and core shear layers, it is also believed that some of the high frequency
noise increase is not all due to internal mixing noise.

Reference 26 concludes that some of the high frequency noise generated with a mixer is not
all internal, but that there is a contribution of unknown quantity due to some residual mixing
at the exit plane of the nozzle. This conclusion was reached by looking at the effect of
simulated flight Mach number on the measured model spectra. The effect of Mach number
showed the high frequency noise decreased somewhat, and therefore had to partially be
generated outside of the nozzle exit, since pure internal mixing noise would not decrease with
an increase in flight Mach number.

Figures 7.1.3.3 and 7.1.3.4 are comparison plots of all the mixers relative to the 12-lobe
(baseline) mixer for the simulated flight condition of 0.27 Mach number. From these figures
it can be readily seen why both the EPNL and PNL values are reduced for higher lobe count
mixers, since they show that as mixer lobe count increases, there is an improvement (i.e.,
reduction) at high (internal mixing noise) frequencies. This is most noticeable at the angle of
peak PNL value, which is at 115 degrees.
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Figures 7.1.3.5 through 7.1.3.8 show the effect of flight on all the mixers relative to the 12-
lobe mixer. From the EPNL plots of Section 7.1.1 it was concluded that almost all of the
noise reduction for the higher lobe count mixers relative to the 12-lobe mixer was primarily
observed at flight (0.27 Mn) condition. This can be observed in the spectra of Figures 7.1.3.5
and 7.1.3.6, since the ATM appears to show a larger difference in high frequency noise
between the static and simulated flight condition, than does the 12-lobe (baseline) mixer. As
expected, from Figure 7.1.3.13 through 7.1.3.16 there appears to be a tone shed from the
simulated engine probes at approximately a frequency of 800 Hz, and it is most noticeable at
low power (i.e., cutback).

Figure 7.1.3.21 and 7.1.3.22 show the impact of heated fan flow versus un-heated fan flow
for the ATM mixer. The un-heated fan flow spectra shows an increase relative to heated fan
flow at high frequencies. It might very well be due to a larger velocity difference between the
fan and core streams when the fan stream is un-heated, which thus causes an increase in the
internal mixing noise generated by the mixing process.

7.1.4 NOY WEIGHTING VERSUS FREQUENCY COMPARISON PLOTS

Figures 7.1.4.1 and 7.1.4.2 show that the peak annoyance is reduced as the number of lobes is
increased. In fact the peak annoyance for the 12-lobe mixer occurs at approximately 2000 Hz
at the angle of Peak PNL (i.e., 115 degrees), and also at 150 degrees. The ATM reduces the
Sound Pressure Level (SPL) at 2,000 Hz by such a large amount, the peak annoyance occurs
at approximately 500 Hz for the ATM at 115, and 150 degrees, instead of at 2,000 Hz. This
annoyance shift equates to a PNL benefit and therefore an EPNL benefit for the ATM relative
to the 12-lobe (baseline) mixer.

7.2 LDV RESULTS SUMMARY

LDV testing was carried out on the splitter and mixer configurations to quantify velocity
differences and patterns at the nozzle exit and in the plume. Internal velocities were
measured at one location as well. All of the LDV data was taken at a high power point
corresponding to a primary nozzle pressure ratio of about 2.0. Free stream Mach number was
set to 0.1. A higher Mach number was desired to match the sideline acoustic condition (Mach
0.27), but was prevented by excessive vibration of the LDV system.

LDV data was obtained for the splitter, 12, 20, and ATM mixers. Table are available that
show the corresponding axial locations and run numbers for these configurations. Axial
locations are normalized to the nozzle diameter (5.376-inches). One location is located inside
the tailpipe. This was made possible by cutting a hole through the tailpipe and inserting a
quartz insert into it so that the lasers can pass through. The scans were done as far back as six
nozzle diameters. A schematic of the LDV data plane relative to the nozzle is shown in
Figures 7.2.1 and 7.2.2.
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The scan plane at each axial location for the mixer configurations consist of approximately
50 points, arranged in a polar type grid. Scans consisted of either one or two lobes
(circumferential extent) of data. This data includes axial (u) and vertical (v) velocity
components, as well as the fluctuating velocities, u” and v’. Although a three component
LDV system was used, only two were working at the time. Color velocity contours of
selected configurations are shown in Fig. 7.2.3. The plot shows the LDV measured axial
velocity contours for the 12, 20, and ATM lobe mixers at locations, X/D = 0, 2, and 4
downstream of nozzle exit plane. Comparisons of the LDV measured results with CFD
predictions will be presented in Section 8.2.

7.3  TOTAL PRESSURE AND TOTAL TEMPERATURE TRAVERSE DATA

Results of the mean flow traverses are presented on Figs. 7.3.1 to 7.3.4. In all cases, color
contour data is presented for the full exhaust at locations X =1.0, 2.5, 5.0, and 10.0 inches
downstream of the nozzle exit plane. While total temperature traverses are shown for 12, 20,
24, and ATM Iobe mixers, total pressure traverses were taken only for the 12-lobe mixer.
The total temperature data shows the expected repeated kidney-shaped patterns typical of
lobed mixer flowfields, with increased mixedness occurring with increased lobe count. The
ATM mixer however produces a different flow pattern, known colloquially as the “ring of
fire” and does not appear to be better mixed than the higher lobe count standard mixers.

Figures 7.3.5 to 7.3.6 shows total temperature traverse comparisons between the measured
data and CFD (NASTAR, Section 8.2) predictions at locations X = 1.0, 2.5, 5.0, and 10.0
inches downstream of the nozzle exit plane for the 12-lobe mixer configuration. While the
CFD calculations have been performed on a substantially denser grid than the experiment,
these results have been interpolated onto the experimental grid and then plotted. The
agreement in level and pattern is quite good. Figure 7.3.7 shows an equivalent total
temperature comparisons at locations X = 5.0, and 10.0 inches downstream of the nozzle exit
plane for the ATM configuration. In this case the pattemn agreement is good, but the
predicted results are hotter than the measured data.
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8.0  ANALYSIS OF SELECTED CONFIGURATIONS

The aim of the following research study is to determine if advanced CFD & CAA
computational techniques can be used to provide a more direct analysis of the jet noise
characteristics of advanced exhaust nozzle systems. The viscous flow analysis used in this
study is the NASTAR code, described in Section 8.1. Jet noise characteristics are assessed
from a variety of predicted flowfield-based parameters. Analytically-based acoustic signature
assessments are performed using NASA Lewis Research Center’s (LeRC) modified version
of the FAA MGB analysis’. This study will calibrate these analyses for axisymmetric
multistream nozzles as well as assess the applicability of the analyses to 3-dimensional
forced mixer nozzles.

8.1 ANALYSIS METHODS

NASTAR Navier-Stokes Analysis: The viscous flow analysis used was the NASTAR code,
which solves the Reynolds-averaged form of the governing equations for steady, three-
dimensional flows including the effects of turbulence and heat release due to chemical
reaction. The code is based on the method due to Rhie’. Essentially, NASTAR represents a
significant extension of the pressure-correction methodology used in the TEACH family of
codes’. The governing equations are approximated using a finite-volume method. The dis-
cretized continuity and momentum equations are used to derive a pressure-correction
equation that is used in place of the continuity equation. Rhie's method provides a single-
cell, general curvilinear coordinate procedure that is applicable for Mach numbers ranging
from incompressible flow to hypersonic flow. The results described in the current study were
obtained using the two equation (k-g) model for turbulence due to Jones and Launder”.

The algorithm used in NASTAR provides for a controlled amount of numerical damping
based on the local cell Reynolds number to promote numerical stability. Various measures
were used to determine whether the computation was converged sufficiently. As with most
CFD codes, NASTAR provides the user with periodic reports of the level of residual errors
that represent the extent to which the discrete form of the governing equations are in balance.
In addition to the residual history, selected integral measures were also monitored as the
iteration proceeded. For example, the bypass ratio, BPR (the ratio of bypass to core mass
flow rates at the mixer exit) was computed and was seen to approach an asymptotic value
indicating that the iteration had essentially converged. NASTAR evaluates residual errors as
well as selected integral measures. These measures can be used to assess convergence
characteristics, aerodynamic performance and jet noise penalties, e.g. contours of stagnation
temperature (Ty) at the mixing duct/nozzle exit plane, profiles of axial velocity (U),

downstream of the mixer and at the nozzle exit plane, and mixedness 1(x) defined as

(1) jpulTox_Tom dA
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where the subscripts x refers to the local axial plane, i to the initial axial plane in the mixing
duct, and m to the fully mixed out plane. Experience shows that each nozzle case required
approximately 5000 iterations to achieve "convergence."

The primary measure for jet noise reduction, however, has been that lower jet noise
corresponded to reduced peak velocity and temperature profiles at the exit plane of the
exhaust nozzle. In the next section we will consider a computationally based aeroacoustic
(CBA) analysis aimed at directly predicting noise spectra (SPL) and acoustic signatures
(OASPL, PNL).

MGB Acoustics Analysis: The direct computation of an engine exhaust sound field by
solving the unsteady-flow form of the Navier-Stokes equations (computational agroacoustics:
CAA) is currently not feasible. An alternative approach based on a unified aerodynamics/
acoustics prediction analysis has been developed by Mani et al’ and is called the MGB
analysis. Mani followed Lighthill’s original assumption that the turbulent fluctuations
produced in the mixing regions of the jet are the primary source of noise generation. The
MGB solution technique is described in two sections: (1) source/spectrum modeling and (2)
sound/ flow interaction.

In the first part, the aerodynamic predictions from a flowfield analysis are used to model the
source strength and its spectrum. In the original version, this analysis was based on the semi-
empirical Reichardt model. Khavaran'™ " has recently developed an improved model that
incorporates a steady-state Navier-Stokes analysis to determine the mean flow aerodynamics
together with k (turbulent kinetic energy) and € (turbulent dissipation rate) turbulence
parameters to define the eddy scales. The acoustics solution applies Lighthill’s acoustic anal-
ogy. The source terms in the acoustics equation are determined by applying Ribner’s model
(for which the correlation function is a linear combination of second-order tensors) assuming
isotropic turbulence. While the original analysis applied Davies empirical model (based on
the mean shear, dU/dr) for the turbulent eddy scales, the current analysis assumes a scaling
based on k/g, a turbulent time scale. The source and spectrum tensor (I) is proportional to k™
and includes Doppler shift and convective Mach number effects. The Doppler effect
provides a relationship between the source frequency (§2) and the observed frequency (f).

Lighthill’s acoustic analogy approach does not incorporate the effect of the surrounding mean
flow on the sound radiated by convected multipole sources. Pressure fluctuations propagate
through regions of nonuniform velocity and temperature before reaching the observer point.
Thus, the location of the source within the jet determines the amount of radiated sound. The
mean flow affects the refraction of the radiated sound and provides an additional convective
amplification factor.

In the second part of the MGB analysis, Mani & Balsa’s formulation for the sound / flow
interaction for axisymmetric geometries is adopted; i.e., the turbulent properties of the jet are
coupled with its acoustic radiation. The mean square pressure in the far-field is an integrated
effect of (1) a factor related to the source intensity and frequency and (2) a series of
directivity factors, which are functions of the flow and convective Mach numbers.
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Consistent with acoustical modeling practice, these Mach numbers are defined with reference
to the freestream speed of sound. The acoustical signature, or sound pressure level (SPL), for
an axisymmetric jet, is expressed in terms of the mean square pressure field,
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P
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where A is a factor related to the source intensity and frequency, and the a s are directivity
factors expressed in terms of the polar observation angle (8), the local sound speed, and flight
and convective Mach numbers through a shielding function. The mean square of the pressure
field at a point in space, due to all sources, can be approximately given as
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where the source intensity spectrum and flow shielding factors are defined as follows,
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The parameters, o, o, and B, are user-specified constants that are empirically determined.
The angle, 0, is measured from the jet centerline starting from the inlet or upstream direction.
More frequently, however, SPL is converted into a weighted average, such as OASPL
(overall sound pressure level). OASPL integrates SPL at a given measurement loca-
tion/orientation over all frequencies.
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82  AERODYNAMIC STUDIES"
8.2.1 COMPUTATIONAL MODEL

The computational volume for the CFD calculations is illustrated schematically in Fig. 8.2.1.
The inflow boundary is at a station upstream of the mixer. The outflow boundary is on the
order of 10 to 17 diameters downstream of the nozzle exit. It is assumed that the mixer
flowfield is perfectly periodic, so that the circumferential extent of the computational volume
is one-half of a lobe. The inflow boundary conditions required for the CFD calculations are
total pressure, total temperature, meridional flow angle (assumed zero here), turbulence
kinetic energy (k), and turbulence dissipation (€) as functions of radius for each of the three
streams. In the jet exit rig, total pressures and total temperatures are measured just
downstream of the flow-conditioning module, where the profiles should be flat. Due to the
significant length of duct between the jet exit rig instrumentation station and the downstream
CFD inflow station, the above profiles are needed at the downstream station reflecting losses
in the bypass and primary ducts.

To meet the above requirement, a total pressure rake was installed in the bypass duct just aft
of station 161.35. Time and budget constraints prevented a more extensive instrumentation
array at this location. To get the detailed profiles at this station, a pre—test CFD calculation
was done for each duct, from the jet exit rig instrumentation downstream to the CFD inflow
station. The analysis included both viscous and thermal effects. By knowing what the
approximate total pressure and temperature losses are in the ducts, test conditions could be
set using the jet exit rig instrumentation to match full-scale engine exhaust system operating
conditions. Fig. 8.2.2 shows the predicted profiles for a high power point along with the flat
input profile at the JER instrumentation station.

The calculations were performed in two stages. Initially, a calculation (CFDI1) was
completed from the upstream charging station to a station where the lobed mixer would begin
in a three-dimensional flow case. The results of these calculation provided inlet profiles for
all subsequent aerodynamic calculations. These latter calculations (CFD2) were performed
from the mixer inlet station, through the nozzle exit plane, to a plane approximately 17
nozzle diameters downstream of the nozzle exit. The forced mixer calculations were
performed on a computational domain that extended 12D downstream, with some
axisymmetric calculations extending the domain to 20D. Based on an observation
concerning the impact of turbulence level on the OASPL acoustical signature, parametric
studies varying the inlet turbulence profile were conducted. Two types of calculations were
performed. In the first type, levels of freestream turbulence and an improved wall boundary
condition were imposed to achieve a “best” match with the measured downstream level of
turbulence energy. This type of “best” calculation used a single-block Cartesian grid of 400
by 133 (53,200) points (Fig. 8.2.3). A second approach was also pursued, whereby the
measured U’ data was used to define a turbulent kinetic energy profile at the X/D = -0.8
station. A single-block Cartesian grid of 254 by 167 (42,418) points was used for these
“experimentally” started calculations.
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The generation of lobed mixer grids involved a multi-step process: determination of the
surface geometry, generation of 2-D slices at constant axial planes, generation 2-D grids
using an expert system, knowledge-based analysis'™ " and stacking the 2-D grids to form a
final 3-D grid. Single blocked-structured grids were generated with internal surfaces defined
using cell types for the cells internal to solid sections that indicate no flow is present. This
feature is a generalization of the IBLANK concept used in codes accepting grid files in
PLOT3D format. Each case considered a half-lobe geometry, assuming symmetry planes in
the azimuthal direction. A typical grid used about 185,000 points (71 axial, 75 radial, 35
azimuthal). Specific cells on the lobe surface were identified as flow-through cells, creating
a stair-step description of the scallop. Figure 8.2.3 illustrates a typical axial (crest-cut) and
cross-sectional grid and the cells for modeling the effects of scalloping (cutouts) and scarfing
(cutback) case. The axial extent of the computational domain was approximately 10 nozzle
diameters downstream of the exit plane. The radial extent of the domain was 5 nozzle
diameters.

The 2D grids were simply stacked to form the required 3D grid. Finally, the 3D grid was
passed through the fifth process, which checks metrics associated with the 3D grid, such as
skewness, aspect ratio, twist, and area distributions. Any problems found with the 3D grid
were remedied by identifying the cause, updating the knowledge base for axial positions in
the affected range, and regenerating the 2D grids locally. The new 2D grids were then re—
stacked and the condition tests were re—run. The shaded scallop region constitutes an area in
which grid nodes are not flagged as a solid boundary.

While the solver used is capable of utilizing both single-block and block—structured grids, all
of the results obtained to date have used single-block topologies. Solid regions were
excluded from the domain by using a generalization of the IBLANK concept commonly
found in solvers operating with grids in PLOT3D format. For the three—dimensional cases
described herein for which comparisons were made with data acquired downstream of the
nozzle exit, the computational domain extended approximately ten nozzle diameters
downstream of the nozzle exit. In the circumferential (lobe-to—lobe) direction, the domain
extended from the plane of symmetry through the peak of a lobe to the plane of symmetry
through the valley. The computational grid consisted of 1.05 million grid nodes.
Approximately 425,000 nodes were used to describe the flow within the nozzle and about
460,000 nodes were used to represent the flow downstream of the nozzle exit; the remaining
nodes were placed external to and upstream of the nozzle exit. The case was run using 20 Sun
Sparc20 CPU’s and required about 300 hours of run time.

8.2.2 AXISYMMETRIC SPLITTER STUDIES
A reference splitter configuration was added to the test program because the currently
available CAA codes can only handle axisymmetric geometries. CFD results for the mixer

configurations have to be manipulated into a axisymmetric field prior to being used as input
into a CAA code.
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Grids for the axisymmetric splitter cases were generated using the P&W Nozzle Design and
Analysis System's. This software rapidly creates single-blocked Cartesian grids for multi—
stream duct/nozzle configurations, initializes the flowfield, and runs the NASTAR code.
Figure 8.2.4 shows a typical grid. There are 400 axial, 133 radial, and 3 circumferential grid
points for a total of 159,600 nodes. The domain extends 17 nozzle diameters in the
downstream direction and 16 nozzle diameters radially. The cases were run on seven Sun
Sparc20 CPU’s using P&W’s PROWESS program for parallel CFD calculations on
distributed workstations'®. Convergence was obtained at about 6000 iterations, which
required about 7 hours of elapsed time.

All LDV data was taken at a high power point corresponding to a primary nozzle pressure
ratio of about 2.0. Free stream Mach number was 0.10. A higher Mach number was desired to
match the sideline acoustic condition (M.. = 0.27), but was prevented by excessive vibration
of the LDV system. Table 8.2.2.1 shows a summary of the test conditions for each
configuration, taken at the CFD inflow station.

Table 8.2.2.1: LDV Test Conditions

Primary Bypass
Configuration Pt* Tt W Pt* Tt w
(psia) (deg R) (brv/s) | (psia) | (deg R) | (lbm/s)
Splitter 27.82 1442 3.63 26.24 528 7.56
12-lobe mixer 28.03 1454 3.55 26.24 536 7.28
20-lobe mixer 27.99 1444 3.55 26.24 544 713
*based on pre-test CFD analysis

Several approaches were used to initialize the CFD calculation. The first simply used the k
and € profiles predicted by the upstream duct calculation previously described. Comparisons
between computed and measured axial velocity (U) and the fluctuation velocity components
(u’,v’) at one internal tailpipe location and three locations across the plume are shown in Fig.
8.2.5. Good agreement is noted for the mean axial velocity component with slight
undermixing relative to the measured data. Comparisons to the measured turbulence data
indicate a significant underprediction. It should be noted that the k-€ model assumes isotropic
turbulence and that the turbulent velocity components are calculated from the k (turbulent
kinetic energy) distribution. In addition, a comparison between data obtained within a low
velocity plume of a round conical nozzle using a hot wire probe and this LDV system showed
the LDV to generally measure higher turbulent velocities.

Figure 8.2.6 shows how the shear layers from the splitter and nozzle lip form and explains the
shape of the fluctuating velocity profiles shown in Fig. 8.2.5. Note that the geometry and
flowfield have been stretched in the vertical direction for this depiction. Since the goal of
this study is to provide input to a CAA code for jet noise prediction, the effect of an error in
predicted turbulence intensity on sound pressure level (SPL) will be investigated in the next
subsection.
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By increasing the primary stream inflow k profile by a factor of four and the bypass stream
inflow k profile by a factor of two, a better comparison to the data was obtained for the
fluctuating velocities at X/D= -0.8 and X/D=0.05. There was however only slight
improvement at the two downstream LDV locations. Furthermore, the peak turbulence levels
predicted within the shear layers did not increase to any great extent. These curves are labeled
best turb. profile on Fig. 8.2.5. Comparisons of the U predictions show a slightly higher
level of downstream mixing.

An alternative strategy was also pursued, whereby the measured u’ data was used to define a
turbulent kinetic energy profile at the X/D= —0.8 station. A new CFD grid was generated that
began at this location, and initialized using the total temperature and pressure profiles
predicted by the previous case at this location. The v’ and w’ components were defined as 0.7
of u’, based on the data taken at X/D=.05, which show that v’/u’ varies from 0.6 to 0.8. This
is consistent with data from other published work that shows v’/u’ in shear layers typically
varies'’” from 0.5 to 0.8. A value of k was then calculated based on the measured u’
component, and the calculated v’ and w’ components. The resultant calculations, plotted as
exp. turb. profile in Fig. 8.2.5, show substantially higher levels of downstream turbulence.
The effect on the predicted mean velocity profile is evident, with a higher level of mixing
along the plume centerline.

The CFD results presented for both mixer and splitter cases were obtained using a turbulent
Prandt! number, Prt, of 0.9, which is the standard default value for the NASTAR code.

Previous studies suggest that the turbulent Prandtl number, which relates the diffusion of
momentum to the diffusion of heat, is about 0.7 for heated axisymmetric jets'g. The effect of
this parameter was investigated by repeating the splitter analysis with the lower value of Pr,

The results showed a slightly higher spreading of the temperature profile within the plume
and a negligible effect on the mean and fluctuating velocity field.

8.2.3 FORCED MIXER STUDIES

A pacing item in performing CFD analyses is obtaining a computational grid that exhibits
little skewness, has suitable grid clustering to resolve boundary layers and other flow features
of interest, and is rapidly generated. The generation of the 3D computational grid for the
JT8D lobe mixer cases considered here involved a five step process. The first step was the
determination of the surface geometry from the surface description point files using an
internally developed code that provides the geometry as two—dimensional slices at selected
axial locations. In the second step, the two—dimensional curves for the surface definition were
fitted with splines so as to provide an analytical description of the surface slices. The third
process involved the determination of the 2D grid for each axial position. This process was
accomplished using the expert system, knowledge-based code developed by J.F.
Dannenhoffer (Refs. 13, 14). The power of this block—structured grid generation technique is
that only boundary definitions are needed; grid smoothing and stretching are functionally
controlled by the user instead of only manually controlled by the user; and a knowledge base
is maintained that can be used for additional or alternative axial cuts. Due to the power of this
tool, it is possibly to generate quickly all 2D axial grids, since the knowledge base
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incorporates a stack language that allows the user to “program” the required inputs, (e.g.
viscous layer stretching parameters) as a function of axial position. Grid clustering was
applied along the centerbody, mixer, and duct walls to capture boundary-layer effects. In the
experimental program, mean and fluctuating velocity components were measured at several
axial locations downstream of the nozzle exit with the 12-lobe and 20-lobe mixers installed.
In this section, comparisons are made between the measured mean and fluctuating values of
axial velocity with CFD results at selected stations. The initialized turbulence profile used
was the best turb. profile (increased k values) described in the splitter section. The data were
acquired at each cross section at several radial and azimuthal locations. In terms of CFD grid
resolution, the measurement “grid” was relatively coarse. Therefore, the CFD results show
greater detail than that shown by the measurements and care must be exercised in interpreting
the relative differences in computed and measured values. For purposes of display, the CFD
results have been limited in radial extent to that used at each measuring station, and have
been reflected about the plane of symmetry through the peak. The circumferential extent of
the LDV data is 1 lobe for the 12-lobe mixer and two lobes for the 20-lobe mixer.

Consideration is given first to comparisons for the 12—lobe mixer. The first set of plots in
Fig. 8.2.7 presents the measured and computed axial velocity contours at X/D=0.05
downstream of the nozzle exit. As will be observed in subsequent results as well, some
asymmetry is seen in the data. It is thought that at the nozzle exit station, this is due to an
asymmetry in the model itself. Tt appears that the asymmetry in the measurements at the
downstream locations is the result of a progressive shifting of the model relative to the scan
rig during the data acquisition process (see Ref. 5). Generally, the CFD results exhibit less
mixing than is measured, as can be seen by comparing the maximum contour levels.
Comparisons for the 12-lobe case at X/D = 2 show that both the data and the CFD prediction
indicate that the flow field is essentially axisymmetric, an interesting result, with less mixing
being exhibited by the CFD prediction. Similarly, at X/D = 4, less mixing is observed in the
CFD results.

Measured and CFD results were also obtained for the 20-lobe mixer and these are shown in
Fig. 8.2.8 for X/D =0.05, 1 and 2, downstream of the nozzle exit. As in the 12-lobe mixer
results, the 20—lobe CFD results show approximately the same level and distribution as seen
in the data. The level of mixing exhibited in the CFD results is somewhat less. Again, the
flow is essentially axisymmetric within two nozzle diameter downstream of the exit plane.

Figure 8.2.9 shows the mixer turbulence data compared to the CFD results for both the 12
and 20-lobe configurations. The view is along a radial line through the lobe peak. Overall
agreement between the data an analysis is good and appears to be better than the level of
agreement for the splitter cases. However, additional calculations for the 12-lobe case show
that the level of agreement is also sensitive to the assumed values for inlet turbulence
parameters (k and €). No systematic variation of inlet turbulence parameters was conducted
due to the lack of sufficient data internal to the nozzle with which to adjust the inlet profiles
for the mixer cases. Furthermore, due to the larger contact area of the shear layers for the 20—
lobe configuration, it is possible that the 20—lobe results are less sensitive to changes in inlet
turbulence parameters. In any case, the results indicate the necessity of obtaining reasonable
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estimates of the inlet turbulence quantities. Also the significant differences between the
measured u” and v’ values suggest that a nonisotropic turbulence model may be required.

Table 8.2.3.1 Calculated Mixedness Parameter

Nozzle Type n (%)
Splitter 11.9
12-Lobe mixer 70.5
20-lobe mixer 74.9

These results confirmed that lobed-mixer nozzles have lower exit plane axial velocities than
are found in splitter nozzles. The table above illustrates this in terms of an improved
mixedness of the exit flow using a lobed mixer nozzle. The table also illustrates the effect of
increased mixedness with increased lobe number. One should note that all calculations cited
in the table below were performed for the same operating point. In addition, the mixer
calculations were made for mixers without scalloping.

8.3  ACOUSTIC ANALYSES”

Based on the above aerodynamic calculations and comparisons with data, parametric studies
have been performed to investigate whether certain CFD modeling factors will have a major
impact on any noise analysis calibrations

8.3.1 AXISYMMETRIC SPLITTER STUDIES

Turbulence Initialization Issues: NASTAR comparisons of the fluctuating velocity
components (u’, v') with LDV measured data, cited in Ref. 12, have identified the effect of
using different starting profiles for the turbulence variables. These comparisons were
performed at the forward flight condition of M.. = 0.1, where aerodynamic not acoustic data
was measured. Comparisons of NASTAR-MGB predictions of OASPL for model-scale
conditions operating at the LDV test point indicate an approximately 2-3 dB difference
between the different initialization approaches, see Fig. 8.3.1. Approximately 0.5 dB can be
accounted for by comparing the peak values of k in the near-field shear layer, using:

SPL €Iror = 1 Ologlo(kexp proﬁk/kbm pmﬁ]c)w2 (6)

The larger turbulence levels observed in the experiment do, as expected, produce the higher
acoustic signature.

Compressibility Issues: Since the model for generation of jet noise depends strongly on the
computed turbulence intensity and dissipation rate, it is expected that the predicted acoustical
signature is dependent on the turbulence model used by the Navier-Stokes solver. Of
particular concern is whether compressibility effects have a strong influence on the MGB
predicted acoustical signature. It is important to note that when the convective
(aerodynamic) Mach number approaches unity, the jet spreading rate decreases appreciably.
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The so-called “Langley” curve®™, representing several planar shear layer data sources,
illustrates this effect. Recently, turbulence model sensitivity studies were performed using
the new MGB code and UTRC’s UTNS™ Navier-Stokes code. The test case was
Yamamoto’s underexpanded convergent nozzle” (case 114). The Reynolds number of the
jet, based on exit flow conditions and the nozzle diameter, is about 1.4 x 10°, therefore the
flow can be considered fully turbulent. The effect of different turbulence models was
evaluated” for the standard k-€ model, the compressibility-corrected Sarkar k-g& model”, and
the RNG k-g model”. Approximately 2 dB shift due to compressibility effects was noted.

Defining an approximate convective Mach number for axisymmetric jet flows as follows,
AR )
¢ (acl ta.)

then, the maximum value of M_ for the Yamamoto case is about 0.78. At this level, the
spreading rate is reduced from its incompressible value by about 30 %. In the current splitter
case, M_ is approximately 0.55 in the potential core and decreases downstream in the plume.
Correspondingly, the centerline Mach number is barely sonic in the potential core and also
decreases downstream in the plume. At this level M_ the effect of compressibility reduces the
jet spreading rate by less than 5%, and the standard k, € model should be adequate for all
splitter and lobed mixer cases as far as the compressibility effects are concemed.

While compressibility effects should be expected to have little impact on the acoustic
signature, Fig. 8.3.2 compares the MGB predictions using assorted turbulence models in the
NASTAR flow solver. The flowfield results indicate little difference in the near-field of the
jet, however the predictions confirms results previously observed by Choi et al”, where k-¢
predictions mix out more rapidly, while using the Sarkar compressibility correction reduces
the effective spreading rate. One should also note that the mixing rate of hot jets can be
significantly impacted by thermal diffusion effects (Pr1). All predictions cited in the text
do not account for this effect.

MGB Calibration: Baseline acoustical predictions obtained using NASTAR and MGB for
the case corresponding to sideline during takeoff noise operation, are shown in Figs. 8.3.3
and 8.3.4. Figures 8.3.3 and 8.3.4 show a comparison of the predicted OASPL and an
aftlooking-spectra for a model scale geometry at 50-ft arc distance. The OASPL levels,
especially for the rearward looking orientation (primary noise source), show good agreement
with data. The effect of inlet turbulence profile does not appear to have a significant effect
on the exhaust signature. The predicted spectra also show good agreement with measured
peak levels, however a predicted dip in the 4k-12k Hz range is not seen in the experimental
data. This result was also observed in predictions using the NPARC Navier-Stokes analysis,
(obtained from NASA Lewis Research Center).
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Model-to-Engine Scaling: A majority of jet noise data, as in this program, has been acquired
at small scale. Full-scale, or engine-size, data are typically extrapolated from the small-scale
data bases. When jet noise mechanisms are dominant, semi-empirical equations are used. By
assuming equal jet velocity, temperature and environmental conditions, corrections can be
made for jet size, observer distance, and acoustic frequency”™*, ie.,

(8) SPL, — SPL, =100 [&2_1010 [ﬁz +1010 [ﬁ]
s 55 = Eio D 8o R, Bio AT

55

where, D is the diameter of the exhaust nozzle, R is the distance from the jet exhaust to the
observer, and f is the acoustic frequency. The subscripts fs and ss refer to full-scale (engine)
and small-scale (model) conditions, respectively. The first term in the above equation is
based on the assumption that acoustic power increases directly with the source area. The
second term relates acoustic power decay to an inverse-square law. The third term, a
correction for filter bandwidth assuming the data were acquired in third-octave bands, is not
always used. Manifest in this equation is the assumption that the same physical phenomena
that are dominant at large scale are also dominant at small scale. For example, the scaling of
jet frequencies is based on the observation that the dominant large-scale turbulence-induced
noise occurs at constant Strouhal number (St=fD/U)), even for a large range of Reynolds
numbers. Thus, the frequency shift with scale for equal velocity jets can be expressed as
follows

{StUJ

——d

©) pl, b,
D

Therefore, by keeping the acoustic wavelength to jet diameter ratio constant, jet noise
directivity patterns are assumed to be maintained.

Scaling studies have been performed using NASTAR and MGB for a configuration at a
power corresponding to the sideline during takeoff noise operation point. Three calculations
were performed to compare with the measured data, (1) a model scale CFD and MGB
calculation, (2) a model scale CFD and a engine scaled MGB, and (3) an full size (engine)
CFD calculation with its corresponding MGB calculation. The model-scale calculations were
evaluated at 50-foot arc distance. This calculation was also scaled to full-scale engine
conditions at a 150-ft arc distance. The last calculation was a CFD analysis of a full-scale
engine nozzle evaluated at 150-foot distance. In the second analysis, the flowfield was
assumed to be unchanged (no Reynolds number effect) so that the geometry could be directly
scaled by a factor of 7.0, the ratio of full-scale to model-scale size. The model test data was
also rescaled to engine size at 150-foot distance using a NASA LeRC procedure. Figures
8.3.5 and 8.3.6 illustrate the comparison. The CFD results indicate little Re effect in the
rescaling calculations (about 1 dB). One can also note from the spectra results of Fig. 8.3.6
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the expected spectra shift to lower frequencies (band numbers) with increased configuration
size.

Forward Flight Effects: Extensive data in the open literature have demonstrated that a
reduced flight velocity results in an increased acoustical signature. Acoustic data taken at the
M..=0.27 and at a static or no forward flight condition confirm this observation. Flowfield
calculations for these conditions were attempted however, numerical instabilities at the static
condition were encountered. Instead, flow calculations were obtained for the forward flight
conditions of M., = 0.1, where aerodynamic (LDV) data was obtained. MGB calculations are
shown in Fig. 8.3.7. The OASPL predictions confirm experimental observations and show
the expected increase in OASPL levels with decreased flight Mach number.

8.3.2 FORCED MIXER STUDIES

Three-dimensional calculations for 12 and 20-lobe mixer nozzles have been performed using
the initialization procedures cited above. The 3-D CFD flowfield solution was then adapted
to the axisymmetric MGB analysis. An equivalent axisymmetric flowfield was developed by
circumferentially mass-averaging the 3-D flowfield in the manner suggested by Mani’. This
approach was assumed adequate since the NASTAR predictions indicate that the flowfield
rapidly approaches an axisymmetric pattern in the external plume. OASPL spectra
comparisons with experimental data for the 12 and 20-lobe mixer nozzles are shown in Fig.
8.3.8. While the analysis is in general agreement with the data, the analysis incorrectly
predicts a higher noise level for the 20-lobe mixer nozzle.

A closer look at the axisymmetric averaging approach is now presented. Figure 8.3.9 coplots
the axisymmetric splitter velocity profile with the circumferentially averaged 12 and 20-lobe
mixer velocity profiles. The mixer nozzles (both 12- and 20-lobe) reduce the peak velocity
from 1500 fps to 1100 fps, however the 20-lobe mixer has a higher velocity level inboard of
the peak. This helps explain the anomalous MGB noise prediction results shown in Fig.
8.3.8. A closer look at the exit plane velocity field for both mixer nozzles is shown on Fig.
8.3.10. Clearly the 12-lobe nozzle has peak velocities in excess of 1300 fps while the 20-
lobed nozzle’s peak velocity is less than 1200 fps. The linear averaging process therefore
produces the erroneous profiles seen in Fig. 8.3.9. In hindsight, an averaging procedure that
weights the velocity nonlinearly like Lighthill theory is probably necessary.

Additional insight to the mixing/noise generation process can be gained by examining the
internal and external turbulent kinetic energy (k) field. Equation (4) indicates that the noise
source intensity is dependent on K, i.e., higher k produces more noise. From the exit plane
contours shown on Fig. 8.3.11, one can see that the maximum values of k are produced by
the shear layers along the lobe sidewalls (linear averaging would not account for this) and is
much larger than generated by the splitter. On the other hand, Fig. 8.3.12 indicates that the
largest k regions occur in the exhaust plume and that the splitter and mixer nozzles appear to
have the same k levels. The vertical scale in Fig. 8.3.12 has been enlarged by a factor of two
to improve the display. Although the nozzle wall is not displayed, the splitter and nozzle
wall shear layers are clearly visible. In the crest-cut mixer view shown on Fig. 8.3.12, only
the nozzle shear layer is seen. Both configurations however have relatively the same
turbulence intensity in the external plume.
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Finally, by displaying the axial contribution to OASPL for a given viewing angle (Fig.
8.3.13), one can examine the cumulative noise contribution at the 120 degree viewing angle
for the axisymmetric splitter and for the 12-lobe mixer. Since the 3D-mixer calculation was
somewhat limited, a restarted, axisymmetric extended domain calculation was performed and
is also displayed. First, one can verify Goldstein’s observation that the majority of the noise
occurs within 10 nozzle diameters of the exit plane for axisymmetric jets. Furthermore, one
can see that the improved mixedness of the lobed mixer flow produces little additional noise
downstream of the exit plane.
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9.0 SUMMARY OF RESULTS AND CONCLUSIONS

P&W has completed a three-year research, design and development effort aimed at using and
improving internal mixers as a means for reducing subsonic jet noise for low bypass ratio
turbofan engines. The goal of the program was:
s to reduce sideline noise by 3 EPNdB relative to noise levels consistent with 1992
mixer technology.

Secondary goals were:
e to generate a detailed aerodynamic and acoustic data base and,
e to verify the ability of the state-of-the-art aerodynamic and acoustic modeling
tools to predict the measured phenomena.

In order to accomplish the above goals, P&W designed and built a total of four 1/7 scale-
model internal mixers, as well as a non-mixed axisymmetric splitter configuration. These
models were tested at NASA’s NATR facility between 1994, and 1996. One of the mixers
was a scale-model of the 12-lobe mixer that was certified with the JT8D-200 engine, which
powers the MD-80 aircraft. This mixer served as the baseline mixer for the program.
Another baseline configuration, an axisymmetric splitter, was designed and tested as being
ideal for the code validation task. The other three mixers were designed by using CFD
(Computational Fluid Dynamics) based on the design concept that a jet noise reduction
relative to the baseline mixer would be achieved by obtaining a more uniform velocity
profile. Two of the four mixers tested, the 20-lobe and 24-lobe, were of a conventional
design. Both of these mixers were essentially the same as the 12-lobe mixer, with the
exception of higher lobe count. The third mixer, designed under P&W auspices, is a unique
double-lobe configuration and was designated the Advanced Technology Mixer (ATM).

During the experimental phase of this program, acoustic spectra, mean flow properties and
turbulence profiles were acquired. The experimental program investigated the acoustic
performance of four different mixers and a baseline splitter. The geometry perturbations also
considered the effects of numerous geometrical variations of the mixers, e.g. scalloping,
scarfing, engine probes, vortex generators, etc. on the acoustic and aerodynamic performance
of the exhaust nozzle. Examination of the acoustic EPNL data indicates that the ATM mixer
was the best mixer design and that it achieved a 1.8dB reduction over the baseline 12-lobe
configuration. Of interest was the observation that the static performance (M..=0.0) of all the
mixers were essentially the same. This is most likely due to the importance of the low
frequency jet noise, which dominates the spectra at the static (0 Mach number) condition.
However in flight, the low frequency jet noise is reduced, and as a result the higher frequency
“mixing noise” becomes the dominant source. The acoustic data also indicated that the
muffler with the ATM had essentially no effect on the noise results. However geometry
perturbations of scalloping, scarfing and vortex generators increased the noise approximately
0.5 EPNdB, and the effects of engine probes increased the noise by approximately 1 EPNdB
and 2 EPNdB, with the 12-lobe mixer, and the ATM, respectively. Also, the ATM with
unheated fan flow was approximately 1 EPNdB higher than the ATM with heated fan flow.
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At the same time, examination of the measured aerodynamic data shows the existence of a
residual-mixing region downstream of the common-flow nozzle exit plane. This mixing
region produces high frequency noise which dominates the EPNL calculations. The
aerodynamic data for the conventional mixers has the easily recognized repeated kidney-
shaped temperature pattern representing incomplete mixing of the hot flow within the lobes.
In contrast, the ATM produces a different flow pattern with concentric isothermal regions,
known colloquially as the “ring of fire”.

The computational studies performed in this program used the P&W NASTAR Navier-
Stokes analysis and the NASA-NYMA MGB acoustic analogy code. Aerodynamic analyses
were performed and favorable comparisons with measured LDV and traverse data were
obtained for the mean axial velocity, the turbulent kinetic energy and the total temperature
fields downstream of the nozzle exit plane for both the splitter and mixer configurations. The
NASTAR analysis predicted accurately the basic flowfield pattemns as well as the detailed
levels and gradients.

The MGB analysis, used in conjunction with the NASTAR Navier-Stokes flow solver, has

been successfully applied to predict the acoustic characteristics of a multistream

axisymmetric nozzle. From these calculations, one can note that:

e MGB provides reasonable acoustical signature predictions for axisymmetric multistream
nozzles,

e MGB provides reasonable acoustical signature predictions of scaling effects, e.g. size and
observer distance,

e MGB is a useful analytical tool for assessing turbulence modeling and input boundary
condition effects, and that sensitivities of order 2 to 4 dB were noted.

While calibrations with experimental data were good, it is believed that the CFD/MGB
analysis approach is best suited for predicting qualitative trends rather than absolute levels.
Similar comparisons performed for three-dimensional forced mixer nozzles were less
successful. While the analyses predicted the general shift in directivity pattern from the
axisymmetric splitter nozzle, they were unable to successfully discriminate between different
lobed mixer configurations. This appears to be largely due to the inability of the
circumferential averaging procedure to represent the 3D problem, rather than the accuracy
limitations of the CFD analysis.
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Figure 2.0.1: Typical Lobe Forced Mixer Exhaust Geometry
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Figure 4.0.1: Trailing Edge view of Splitter and Mixers
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Figure 4.2.2: Typical Lobe Mixer with Scallop and Scarf Angle Defined
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Figure 5.0.1: Picture of APL Dome
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Figure 5.0.2: Picture of NATR, Anechoic Test Area, and Microphone Array Location
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Figure 5.1.3: Schematic of Jet Exit Rig (JER)
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Figure 7.1.1.12: EPNL vs Mixed Jet Mach Number : Effect of Simulated Engine Probes with ATM
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Figure 7.1.2.1: PNL vs Angle Comparison of the Splitter and 12-Lobe Mixer at (a) Cutback Power
(Cond. 5) and (b) Takeoff Power (Cond. 8)
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Figure 7.1.2.2: PNL vs Angle Comparison of all Mixers (12, 20, 24, and ATM) at (a) Cutback
Power (Cond. 5) and (b) Takeoff Power (Cond. 8)
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Figure 7.1.2.3: PNL vs Angle at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8) :
Effect of Flight on Splitter, 12-Lobe Mixer, and ATM
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Figure 7.1.2.4: PNL vs Angle at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8) :
Effect of Flight on 12, 20, and 24-Lobe Mixers
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Figure 7.1.2.5: PNL vs Angle Comparison of Zero and Alternating Scarf Angle (0/12 deg.) on
20-Lobe Mixer at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8)
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Figure 7.1.2.6: PNL vs Angle at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8) :
Effect of Lobe Scallops on ATM
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Figure 7.1.2.7: PNL vs Angle at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8) :
Effect of Simulated Engine Probes with 12-Lobe Mixer
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Figure 7.1.2.8: PNL vs Angle at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8) :
Effect of Simulated Engine Probes with ATM
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Figure 7.1.2.9: PNL vs Angle at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8) :
Effect of Muffler with ATM
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Figure 7.1.2.10: PNL vs Angle at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8) :
Effect of Vortex Generators with 20-Lobe Mixer
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Figure 7.1.2.11: PNL vs Angle at (a) Cutback Power (Cond. 5) and (b) Takeoff Power (Cond. 8) :
Effect of Fan Temperature with ATM
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Figure 7.1.3.1: SPL vs Frequency Comparison of Splitter and 12-Lobe Mixer for Angles 60, 90, 115,
and 150 degrees at Cutback Power (Condition 5)
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Figure 7.1.3.3: SPL vs Frequency Comparison of All Mixers (12, 20, 24-Lobe and ATM) for Angles
60, 90, 115, and 150 degrees at Cutback Power (Condition 5)
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Figure 7.1.3.14: SPL vs Frequency Comparison of 12-Lobe Mixer Without and With Simulated
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Figure 7.1.3.15: SPL vs Frequency Comparison of ATM Without & With Simulated Engine Probes
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Figure 7.1.3.16: SPL vs Frequency Comparison of ATM Without & With Simulated Engine Probes
for Angles 60, 90, 115, and 150 degrees at Takeoff Power (Cond. 8)
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Figure 7.1.3.17: SPL vs Frequency Comparison of ATM Without and With Muffler for Angles 60, 90,
115, and 150 degrees at Cutback Power (Condition 5)
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Figure 7.1.3.18: SPL vs Frequency Comparison of ATM Without and With Muffler for Angles 60, 90,
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Figure 7.1.3.19: SPL vs Frequency Comparison of 20-Lobe Without and With Vortex Generators for
Angles 60, 90, 115, and 150 degrees at Cutback Power (Condition 5)
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Figure 7.1.3.20: SPL vs Frequency Comparison of 20-Lobe Without and With Vortex Generators for
Angles 60, 90, 115, and 150 degrees at Takeoff Power (Condition 8)
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Figure 7.1.3.21: SPL vs Frequency Comparison of ATM With Heated and Unheated fan flow for
Angles 60, 90, 115, and 150 degrees at Cutback Power (Condition 5)
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Figure 7.1.3.22: SPL vs Frequency Comparison of ATM With Heated and Unheated fan flow for
Angles 60, 90, 115, and 150 degrees at Takeoff Power (Condition 8)
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Figure 7.1.4.1: NOY Weighting vs Frequency Comparison of Splitter with all Mixers (12, 20, 24,
and ATM) for Angles 60, 90, 115, and 150 degrees at Cutback Power (Cond. 5)
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Figure 7.1.4.2: NOY Weighting vs Frequency Comparison of Splitter with all Mixers (12, 20, 24,
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Figure 7.2.2: Schematic of exhaust nozzle installations in NASA NATR test facility
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Figure 7.2.3: LDV Acxial Velocity Contours Downstream of Nozzle Exit Plane for
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X=2.5"

Figure 7.3.5: 12-Lobe Mixer Model Total Temperature Traverse Comparisons at X=1.0, and 2.5 Inches
Downstream of the Nozzle Exit Plane
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X=10"
Figure 7.3.6: 12-Lobe Mixer Model Total Temperature Traverse Comparisons at X=5.0, and 10.0 Inches
Downstream of the Nozzle Exit Plane
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X=5

X =10

Figure 7.3.7: ATM Model Total Temperature Traverse Comparisons at X=5.0, and 10.0 Inches
Downstream of the Nozzle Exit Plane
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Figure 8.2.1: Computational Volume for Analysis
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Figure 8.2.2: CFD Initialization Profiles
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Figure 8.2.5a: Comparison of Splitter Analysis to Data
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Figure 8.2.5d: Comparison of Splitter Analysis to Data
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Figure 8.2.6: Turbulent Kinetic Energy Contours
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Figure 8.2.7: Comparison of 12-Lobe Mixer Analysis and Data

NASA/CR—2001-210571 128



Analysis

oa
S
e
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Figure 8.2.9a: Comparison of 12 and 20-Lobe Mixer Analysis to Data
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Figure 8.2.9b: Comparison of 12 and 20-Lobe Mixer Analysis to Data

NASA/CR—2001-210571 131



os ‘\ * 12-Lobe

8

g B
7T

!
ot \ ¢ Udea [
a \data
o -+ ’
o o o) 1D "0 o 20
Urms, ft/s
o5
oa o A ® B B ]
A 9
oa .’ —
g .
o2 [ ]
AP
/.
o ( 20-Lobe
RS—
M [ ] s Udsta
a Vdata
o D, ! !
() © - o) = L o] o 20
Urms, ft/s

Figure 8.2.9c: Comparison of 12 and 20-Lobe Mixer Analysis to Data
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Figure 8.3.1: Effect of inlet turbulence profile on OASPL
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Figure 8.3.2: Effect of turbulence model on OASPL
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Figure 8.3.3: Model scale Splitter OASPL comparisons at 50 foot distance
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Figure 8.3.4: Model scale Splitter 1/3 octave spectra comparisons at 50 foot distance
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Figure 8.3.8: MGB/data comparisons of OASPL for 12/20-lobe mixer nozzles at 50 foot distance
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Figure 8.3.10: Exit plane velocity field for 12 and 20-lobe mixer nozzles (Ux10” fps)
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Figure 8.3.11: Exit plane turbulent kinetic energy contours for axisymmetric Splitter and 12-lobe

mixer nozzles (kx10°, ft’/s’)
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Figure 8.3.12: Axial view of turbulent kinetic energy contours in the exhaust of an axisymmetric

Splitter and 20-lobe mixer nozzles (kx10*, ft’/s’)
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